EZ | Deep Snow: 使用GANs合成遙感圖像 | 04

結(jié)論

我們揭示了以下結(jié)論:CyeleGAN用于遙感圖像生成是可行的,尤其是給沒有雪的地面覆蓋雪励烦。盡管這個生成結(jié)果并不能騙過人的眼睛造壮,但通過對某些區(qū)域的詳細觀察,可以找到一些植入的偽像:這就提示我們做任何操作時都要小心它對后面過程的影響绪商。我們還介紹了一些質(zhì)量評估的方法苛谷,可以用來指導(dǎo)CycleGAN這種非配對訓(xùn)練應(yīng)該何時停止——雖然只研究了一下同域翻譯(RGB\rightarrowRGB),我們預(yù)感到格郁,以后可能要用CycleGAN或pix2pix在跨域之間做實驗腹殿,但就像我們已經(jīng)說了的那些一樣:我們要對這些模型引入的潛在的artifacts做潛在的分析。

致謝

本文得到了洛斯阿拉莫斯實驗室研究與開發(fā)計劃和空間與地球中心的支持例书。還要感謝笛卡爾實驗室的圖像和技術(shù)支持锣尉。最后,還要感謝同志們的建設(shè)性的討論决采。

引用

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., “Generative adversarial nets,” in [Advances in Neural Information Processing Systems], 2672– 2680 (2014).

[2] Schmitt, M., Hughes, L. H., and Zhu, X. X., “The SEN1-2 dataset for deep learning in SAR-optical data fusion,” arXiv preprint arXiv:1807.01569 (2018).

[3] Grohnfeldt, C., Schmitt, M., and Zhu, X., “A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images,” in [International Geoscience and Remote Sensing Symposium (IGARSS)], 1726–1729, IEEE (2018).

[4] Ji, G., Wang, Z., Zhou, L., Xia, Y., Zhong, S., and Gong, S., “SAR image colorization using multidomain cycle-consistency generative adversarial network,” IEEE Geoscience and Remote Sensing Letters (2020).

[5] Fuentes Reyes, M., Auer, S., Merkle, N., Henry, C., and Schmitt, M., “SAR-to-optical image translation based on conditional generative adversarial networksoptimization, opportunities and limits,” Remote Sens- ing 11(17), 2067 (2019).

[6] Schmitt, M., Hughes, L. H., Qiu, C., and Zhu, X. X., “SEN12MS–a curated dataset of georeferenced multi- spectral Sentinel-1/2 imagery for deep learning and data fusion,” arXiv preprint arXiv:1906.07789 (2019).

[7] Toriya, H., Dewan, A., and Kitahara, I., “SAR2OPT: Image alignment between multi-modal images using generative adversarial networks,” in [International Geoscience and Remote Sensing Symposium (IGARSS)], 923–926, IEEE (2019).

[8] Mohajerani, S., Asad, R., Abhishek, K., Sharma, N., van Duynhoven, A., and Saeedi, P., “Cloudmaskgan: A content-aware unpaired image-to-image translation algorithm for remote sensing imagery,” in [International Conference on Image Processing (ICIP)], 1965–1969, IEEE (2019).

[9] Ren, C. X., Ziemann, A., Durieux, A., and Theiler, J., “Cycle-consistent adversarial networks for realistic pervasive change generation in remote sensing imagery,” arXiv preprint arXiv:1911.12546 (2019).

[10] Theiler, J. and Perkins, S., “Proposed framework for anomalous change detection,” in [ICML Workshop on Machine Learning Algorithms for Surveillance and Event Detection], 7–14 (2006).

[11] Goodfellow, I., “NIPS 2016 tutorial: Generative adversarial networks,” arXiv preprint arXiv:1701.00160 (2016).

[12] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-image translation with conditional adversarial networks,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 1125–1134 (2017).20–22

[13] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A., “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 2223–2232 (2017).

[14] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., “Going deeper with convolutions,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 1–9 (2015).

[15] Dowson, D. C. and Landau, B. V., “The Fr ?echet distance between multivariate normal distributions,” Journal of Multivariate Analysis 12(3), 450–455 (1982).

[16] Vaserstein, L. N., “Markov processes over denumerable products of spaces, describing large systems of automata,” Problemy Peredachi Informatsii 5(3), 64–72 (1969).

[17] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S., “GANs trained by a two timescale update rule converge to a local Nash equilibrium,” in [Advances in Neural Information Processing Systems], 6626–6637 (2017).

[18] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recognition,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 770–778 (2016).

[19] Keisler, R., Skillman, S. W., Gonnabathula, S., Poehnelt, J., Rudelis, X., and Warren, M. S., “Visual search over billions of aerial and satellite images,” Computer Vision and Image Understanding 187, 102790 (2019).

[20] Longbotham, N., Pacifici, F., Glenn, T., Zare, A., Volpi, M., Tuia, D., Christophe, E., Michel, J., Inglada, J., Chanussot, J., et al., “Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1), 331–342 (2012).

[21] Ziemann, A., Ren, C. X., and Theiler, J., “Multi-sensor anomalous change detection at scale,” in [Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV], 10986, 1098615,
International Society for Optics and Photonics (2019).

[22] Touati, R., Mignotte, M., and Dahmane, M., “Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based markov random field model,” IEEE Trans. Image Processing 29, 757– 767 (2019).

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末自沧,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子树瞭,更是在濱河造成了極大的恐慌拇厢,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,755評論 6 507
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件晒喷,死亡現(xiàn)場離奇詭異孝偎,居然都是意外死亡,警方通過查閱死者的電腦和手機厨埋,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,305評論 3 395
  • 文/潘曉璐 我一進店門邪媳,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人荡陷,你說我怎么就攤上這事雨效。” “怎么了废赞?”我有些...
    開封第一講書人閱讀 165,138評論 0 355
  • 文/不壞的土叔 我叫張陵徽龟,是天一觀的道長。 經(jīng)常有香客問我唉地,道長据悔,這世上最難降的妖魔是什么传透? 我笑而不...
    開封第一講書人閱讀 58,791評論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮极颓,結(jié)果婚禮上朱盐,老公的妹妹穿的比我還像新娘。我一直安慰自己菠隆,他們只是感情好兵琳,可當(dāng)我...
    茶點故事閱讀 67,794評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著骇径,像睡著了一般躯肌。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上破衔,一...
    開封第一講書人閱讀 51,631評論 1 305
  • 那天清女,我揣著相機與錄音,去河邊找鬼晰筛。 笑死嫡丙,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的传惠。 我是一名探鬼主播迄沫,決...
    沈念sama閱讀 40,362評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼卦方!你這毒婦竟也來了羊瘩?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,264評論 0 276
  • 序言:老撾萬榮一對情侶失蹤盼砍,失蹤者是張志新(化名)和其女友劉穎尘吗,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體浇坐,經(jīng)...
    沈念sama閱讀 45,724評論 1 315
  • 正文 獨居荒郊野嶺守林人離奇死亡睬捶,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,900評論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了近刘。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片擒贸。...
    茶點故事閱讀 40,040評論 1 350
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖觉渴,靈堂內(nèi)的尸體忽然破棺而出介劫,到底是詐尸還是另有隱情,我是刑警寧澤案淋,帶...
    沈念sama閱讀 35,742評論 5 346
  • 正文 年R本政府宣布座韵,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏誉碴。R本人自食惡果不足惜宦棺,卻給世界環(huán)境...
    茶點故事閱讀 41,364評論 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望黔帕。 院中可真熱鬧代咸,春花似錦、人聲如沸成黄。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,944評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽慨默。三九已至,卻和暖如春弧腥,著一層夾襖步出監(jiān)牢的瞬間厦取,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,060評論 1 270
  • 我被黑心中介騙來泰國打工管搪, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留虾攻,地道東北人。 一個月前我還...
    沈念sama閱讀 48,247評論 3 371
  • 正文 我出身青樓更鲁,卻偏偏與公主長得像霎箍,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子澡为,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 44,979評論 2 355