Resnet-50解決皮膚癌檢測

1.導(dǎo)入必要的庫

#Import some necessary Modules
import os
import cv2
import keras
import numpy as np
import pandas as pd
import random as rn
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
from IPython.display import SVG
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

from tensorflow.python.keras import backend as K
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.utils import to_categorical
from tensorflow.python.keras.callbacks import ReduceLROnPlateau
from tensorflow.python.keras.utils.vis_utils import model_to_dot
from tensorflow.python.keras.applications.vgg16 import VGG16
from tensorflow.python.keras.applications.resnet50 import ResNet50,preprocess_input
from sklearn.model_selection import train_test_split,KFold, cross_val_score, GridSearchCV
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator,load_img, img_to_array
from tensorflow.python.keras.layers import Dense, Flatten, GlobalAveragePooling2D,BatchNormalization,Dropout,Conv2D,MaxPool2D

#Resnet-50 has been pre_trained, weights have been saved in below path
resnet_weights_path = '../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
vgg16_weights_path="../input/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5"

#Display the dir list
print(os.listdir("../input"))

2.輸出結(jié)果:
Using TensorFlow backend.
['skin-cancer-malignant-vs-benign', 'vgg16', 'resnet50']

將JPG文件轉(zhuǎn)化為數(shù)組

def Dataset_loader(DIR,RESIZE):
    IMG = []
    read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
    for IMAGE_NAME in tqdm(os.listdir(DIR)):
        PATH = os.path.join(DIR,IMAGE_NAME)
        _, ftype = os.path.splitext(PATH)
        if ftype == ".jpg":
            img = read(PATH)
            img = cv2.resize(img, (RESIZE,RESIZE))
            IMG.append(np.array(img)/255.)
    return IMG
benign_train = np.array(Dataset_loader('../input/skin-cancer-malignant-vs-benign/data/train/benign',224))
malign_train = np.array(Dataset_loader('../input/skin-cancer-malignant-vs-benign/data/train/malignant',224))
benign_test = np.array(Dataset_loader('../input/skin-cancer-malignant-vs-benign/data/test/benign',224))
malign_test = np.array(Dataset_loader('../input/skin-cancer-malignant-vs-benign/data/test/malignant',224))

輸出結(jié)果:
100%|██████████| 1440/1440 [00:07<00:00, 202.51it/s]
100%|██████████| 1197/1197 [00:05<00:00, 228.46it/s]
100%|██████████| 360/360 [00:01<00:00, 202.07it/s]
100%|██████████| 300/300 [00:01<00:00, 226.01it/s]

3.數(shù)據(jù)預(yù)處理

# Create labels
# Merge data 
# Shuffle train data
# Split validation data from train data
# Shuffle test data

4.預(yù)覽前12張圖片

# Display first 15 images of moles, and how they are classified
w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3
for i in range(1, columns*rows +1):
    ax = fig.add_subplot(rows, columns, i)
    if Y_train[i] == 0:
        ax.title.set_text('Benign')
    else:
        ax.title.set_text('Malignant')
    plt.imshow(x_train[i], interpolation='nearest')
plt.show()
image.png

5.數(shù)據(jù)增強(qiáng)

# Data auguments
datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0

6.定義模型

# Define model with different applications
model = Sequential()
model.add(ResNet50(include_top=False,input_tensor=None,input_shape=(224,224,3),pooling='avg',classes=2,weights=resnet_weights_path))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
……
model.add(BatchNormalization())
model.add(Dense(1, activation='sigmoid'))

model.layers[0].trainable = False
model.summary()

輸出結(jié)果:


Layer (type) Output Shape Param #

resnet50 (Model) (None, 2048) 23587712


flatten (Flatten) (None, 2048) 0


dense (Dense) (None, 512) 1049088


dropout (Dropout) (None, 512) 0


batch_normalization_v1 (Batc (None, 512) 2048


dense_1 (Dense) (None, 256) 131328


dropout_1 (Dropout) (None, 256) 0


batch_normalization_v1_1 (Ba (None, 256) 1024


dense_2 (Dense) (None, 1) 257

Total params: 24,771,457
Trainable params: 1,182,209
Non-trainable params: 23,589,248


7.編譯模型

# Compile model
model.compile()

8.學(xué)習(xí)率衰減

#Learning rate decay with ReduceLROnPlateau
red_lr= 

9.訓(xùn)練模型

# Train model
batch_size=64
epochs=150
History = model.fit_generator( )

輸出結(jié)果:
……
Epoch 00146: ReduceLROnPlateau reducing learning rate to 9.095435737904722e-10.
26/26 [==============================] - 18s 686ms/step - loss: 0.1139 - acc: 0.9566 - val_loss: 0.2779 - val_acc: 0.8890
Epoch 147/150
1000/1000 [==============================] - 3s 3ms/sample - loss: 0.2764 - acc: 0.8890
26/26 [==============================] - 18s 687ms/step - loss: 0.1370 - acc: 0.9469 - val_loss: 0.2784 - val_acc: 0.8890
Epoch 148/150
1000/1000 [==============================] - 3s 3ms/sample - loss: 0.2761 - acc: 0.8890
26/26 [==============================] - 18s 704ms/step - loss: 0.1363 - acc: 0.9469 - val_loss: 0.2782 - val_acc: 0.8890
Epoch 149/150
1000/1000 [==============================] - 3s 3ms/sample - loss: 0.2760 - acc: 0.8890

Epoch 00149: ReduceLROnPlateau reducing learning rate to 6.366804861102082e-10.
26/26 [==============================] - 18s 693ms/step - loss: 0.1273 - acc: 0.9462 - val_loss: 0.2780 - val_acc: 0.8890
Epoch 150/150
1000/1000 [==============================] - 3s 3ms/sample - loss: 0.2754 - acc: 0.8900
26/26 [==============================] - 18s 689ms/step - loss: 0.1414 - acc: 0.9462 - val_loss: 0.2774 - val_acc: 0.8900

10.測試模型

# Testing model on test data to evaluate
lists=[]
y_pred = model.predict(X_test)
for i in range(len(y_pred)):
    if y_pred[i][0]>0.5:
        lists.append(1)
    else:
        lists.append(0)

print(accuracy_score(Y_test, lists))

輸出結(jié)果:
0.8787878787878788

11.畫圖

plt.plot(History.history['acc'])
plt.plot(History.history['val_acc'])
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epochs')
plt.legend(['train', 'test'])
plt.show()

輸出結(jié)果:


image.png

12.顯示前8個(gè)良性圖片

 # Display first 8 images of benign
w=60
h=40
fig=plt.figure(figsize=(18, 10))
columns = 4
rows = 2

def Transfername(namecode):
    if namecode==0:
        return "Benign"
    else:
        return "Malignant"

for i in range(len(prop_class)):
    ax = fig.add_subplot(rows, columns, i+1)
    ax.set_title("Predicted result:"+ Transfername(lists[prop_class[i]])
                       +"\n"+"Actual result: "+ Transfername(Y_test[prop_class[i]]))
    plt.imshow(X_test[prop_class[i]], interpolation='nearest')
plt.show()

輸出結(jié)果:


image.png

13.顯示前8個(gè)惡性圖片

 # Display first 8 images of benign
w=60
h=40
fig=plt.figure(figsize=(18, 10))
columns = 4
rows = 2
for i in range(len(mis_class)):
    ax = fig.add_subplot(rows, columns, i+1)
    ax.set_title("Predicted result:"+ Transfername(lists[mis_class[i]])
                   +"\n"+"  Actual result: "+ Transfername(Y_test[mis_class[i]]))
    plt.imshow(X_test[mis_class[i]], interpolation='nearest')
plt.show()</pre>

輸出結(jié)果:


image.png
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末描焰,一起剝皮案震驚了整個(gè)濱河市祖秒,隨后出現(xiàn)的幾起案子赞庶,更是在濱河造成了極大的恐慌忌栅,老刑警劉巖人弓,帶你破解...
    沈念sama閱讀 218,755評論 6 507
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異也搓,居然都是意外死亡刑棵,警方通過查閱死者的電腦和手機(jī)巴刻,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,305評論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來蛉签,“玉大人胡陪,你說我怎么就攤上這事≌埽” “怎么了督弓?”我有些...
    開封第一講書人閱讀 165,138評論 0 355
  • 文/不壞的土叔 我叫張陵,是天一觀的道長乒验。 經(jīng)常有香客問我愚隧,道長,這世上最難降的妖魔是什么锻全? 我笑而不...
    開封第一講書人閱讀 58,791評論 1 295
  • 正文 為了忘掉前任狂塘,我火速辦了婚禮,結(jié)果婚禮上鳄厌,老公的妹妹穿的比我還像新娘荞胡。我一直安慰自己,他們只是感情好了嚎,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,794評論 6 392
  • 文/花漫 我一把揭開白布泪漂。 她就那樣靜靜地躺著,像睡著了一般歪泳。 火紅的嫁衣襯著肌膚如雪萝勤。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,631評論 1 305
  • 那天呐伞,我揣著相機(jī)與錄音敌卓,去河邊找鬼。 笑死伶氢,一個(gè)胖子當(dāng)著我的面吹牛趟径,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播癣防,決...
    沈念sama閱讀 40,362評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼蜗巧,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了劣砍?” 一聲冷哼從身側(cè)響起惧蛹,我...
    開封第一講書人閱讀 39,264評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎刑枝,沒想到半個(gè)月后香嗓,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,724評論 1 315
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡装畅,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,900評論 3 336
  • 正文 我和宋清朗相戀三年靠娱,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片掠兄。...
    茶點(diǎn)故事閱讀 40,040評論 1 350
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡像云,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出蚂夕,到底是詐尸還是另有隱情迅诬,我是刑警寧澤,帶...
    沈念sama閱讀 35,742評論 5 346
  • 正文 年R本政府宣布婿牍,位于F島的核電站侈贷,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏等脂。R本人自食惡果不足惜俏蛮,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,364評論 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望上遥。 院中可真熱鬧搏屑,春花似錦、人聲如沸粉楚。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,944評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽模软。三九已至伟骨,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間撵摆,已是汗流浹背底靠。 一陣腳步聲響...
    開封第一講書人閱讀 33,060評論 1 270
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留特铝,地道東北人暑中。 一個(gè)月前我還...
    沈念sama閱讀 48,247評論 3 371
  • 正文 我出身青樓,卻偏偏與公主長得像鲫剿,于是被迫代替她去往敵國和親鳄逾。 傳聞我的和親對象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,979評論 2 355

推薦閱讀更多精彩內(nèi)容