葉綠體基因組組裝軟件NOVOPlasty使用簡介

NOVOPlasty 是一個(gè)perl腳本晚吞,沒有依賴任何其他軟件转捕,下載好以后直接可以使用饭入。
下載鏈接
https://github.com/ndierckx/NOVOPlasty

其基本使用方法是

perl NOVOPlasty3.7.2.pl -c config.txt

config.txt文件是需要我們自己準(zhǔn)備的各吨,軟件包里提供了這個(gè)文件,我們需要對(duì)應(yīng)著改里面的內(nèi)容沦寂,文件的內(nèi)容如下:

Project:
-----------------------
Project name          = Test
Type                  = mito
Genome Range          = 12000-22000
K-mer                 = 39
Max memory            = 
Extended log          = 0
Save assembled reads  = no
Seed Input            = /path/to/seed_file/Seed.fasta
Reference sequence    = /path/to/reference_file/reference.fasta (optional)
Variance detection    = 
Chloroplast sequence  = /path/to/chloroplast_file/chloroplast.fasta (only for "mito_plant" option)

Dataset 1:
-----------------------
Read Length           = 151
Insert size           = 300
Platform              = illumina
Single/Paired         = PE
Combined reads        = 
Forward reads         = /path/to/reads/reads_1.fastq
Reverse reads         = /path/to/reads/reads_2.fastq

Heteroplasmy:
-----------------------
MAF                   = 
HP exclude list       = 
PCR-free              = 

Optional:
-----------------------
Insert size auto      = yes
Insert Range          = 1.9
Insert Range strict   = 1.3
Use Quality Scores    = no




Project:
-----------------------
Project name         = Choose a name for your project, it will be used for the output files.
Type                 = (chloro/mito/mito_plant) "chloro" for chloroplast assembly, "mito" for mitochondrial assembly and 
                       "mito_plant" for mitochondrial assembly in plants.
Genome Range         = (minimum genome size-maximum genome size) The expected genome size range of the genome.
                       Default value for mito: 12000-20000 / Default value for chloro: 120000-200000
                       If the expected size is know, you can lower the range, this can be useful when there is a repetitive
                       region, what could lead to a premature circularization of the genome.
K-mer                = (integer) This is the length of the overlap between matching reads (Default: 33). 
                       If reads are shorter then 90 bp or you have low coverage data, this value should be decreased down to 
                       23. 
                       For reads longer then 101 bp, this value can be increased, but this is not necessary.
Max memory           = You can choose a max memory usage, suitable to automatically subsample the data or when you have  
                       limited                      
                       memory capacity. If you have sufficient memory, leave it blank, else write your available memory in GB
                       (if you have for example a 8 GB RAM laptop, put down 7 or 7.5 (don't add the unit in the config file))
Extended log         = Prints out a very extensive log, could be useful to send me when there is a problem  (0/1).
Save assembled reads = All the reads used for the assembly will be stored in seperate files; if option 2 is used, the   
                       original ids will be retained (yes/no/2)
Seed Input           = The path to the file that contains the seed sequence.
Reference (optional) = If a reference is available, you can give here the path to the fasta file.
                       The assembly will still be de novo, but references of the same genus can be used as a guide to resolve 
                       duplicated regions in the plant mitochondria or the inverted repeat in the chloroplast. 
                       References from different genus haven't beeen tested yet.
Variance detection   = If you select yes, you should also have a reference sequence (previous line). It will create a vcf 
                       file with all the variances compared to the give reference (yes/no)
Chloroplast sequence = The path to the file that contains the chloroplast sequence (Only for mito_plant mode).
                       You have to assemble the chloroplast before you assemble the mitochondria of plants!

Dataset 1:
-----------------------
Read Length          = The read length of your reads.
Insert size          = Total insert size of your paired end reads, it doesn't have to be accurate but should be close enough.
Platform             = illumina/ion - The performance on Ion Torrent data is significantly lower
Single/Paired        = PE/SE
Combined reads       = The path to the file that contains the combined reads (forward and reverse in 1 file)
Forward reads        = The path to the file that contains the forward reads (not necessary when there is a merged file)
Reverse reads        = The path to the file that contains the reverse reads (not necessary when there is a merged file)

Heteroplasmy:
-----------------------
MAF                  = (0.007-0.49) Minor Allele Frequency: If you want to detect heteroplasmy, first assemble the genome 
                       without this option. Then give the resulting sequence as a reference and as a seed input. And give the 
                       minimum minor allele frequency for this option (0.01 will detect heteroplasmy of >1%)
HP exclude list      = Option not yet available  
PCR-free             = (yes/no) If you have a PCR-free library write yes

Optional:
-----------------------
Insert size auto     = (yes/no) This will finetune your insert size automatically (Default: yes)
Insert Range         = This variation on the insert size, could lower it when the coverage is very high or raise it when the
                       coverage is too low (Default: 1.9). 
Insert Range strict  = Strict variation to resolve repetitive regions (Default: 1.3).                                
Use Quality Scores   = It will take in account the quality scores, only use this when reads have low quality, like with the   
                       300 bp reads of Illumina (yes/no)

我們自己需要修改的包括:
Project name:給自己的項(xiàng)目起一個(gè)名字学密,自己可以隨便起
Type: 如果是組裝葉綠體需要將這一項(xiàng)改為 chloro
Genome Range:葉綠體基因組序列長度通常為150kb左右,這一項(xiàng)可以改為130,000-170,000
K-mer:一般直接用默認(rèn)的39即可
Max memoryExtended log:這兩項(xiàng)不用管
Save assembled reads:這一項(xiàng)如果改為yes的話會(huì)將用于組裝的數(shù)據(jù)以fasta的格式保留下來传藏。
Seed Input:種子序列的路徑腻暮,軟件包里提供了一個(gè)Seed_RUBP_cp.fasta文件,直接使用這個(gè)文件就可以
Reference sequence:參考序列的路徑漩氨,這個(gè)參考序列是可選的西壮,如果沒有參考序列,等號(hào)后面的內(nèi)容需要?jiǎng)h除
Variance detection:這個(gè)不用管叫惊,直接空著就可以
Chloroplast sequence:組裝葉綠體的時(shí)候需要把等號(hào)后面的內(nèi)容刪掉
Read Length Insert size Platform:這些可以在測(cè)序報(bào)告中找到款青,需要改為自己的
Single/Paired:好像只支持雙端測(cè)序數(shù)據(jù)
Combined reads:這個(gè)可以不用管
Forward reads:第一個(gè)fastq文件的路徑
Reverse reads:第二個(gè)fastq文件的路徑

剩下的都可以不用管了
這個(gè)config.txt文件準(zhǔn)備好就可以直接運(yùn)行

perl NOVOPlasty3.7.2.pl -c config.txt

軟件運(yùn)行很快,不一會(huì)就可以拿到自己的結(jié)果了霍狰!

歡迎關(guān)注我的公眾號(hào)
小明的數(shù)據(jù)分析筆記本

公眾號(hào)二維碼.jpg

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末抡草,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子蔗坯,更是在濱河造成了極大的恐慌康震,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,682評(píng)論 6 507
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件宾濒,死亡現(xiàn)場(chǎng)離奇詭異腿短,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,277評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門橘忱,熙熙樓的掌柜王于貴愁眉苦臉地迎上來赴魁,“玉大人,你說我怎么就攤上這事钝诚∮庇” “怎么了?”我有些...
    開封第一講書人閱讀 165,083評(píng)論 0 355
  • 文/不壞的土叔 我叫張陵凝颇,是天一觀的道長潘拱。 經(jīng)常有香客問我,道長拧略,這世上最難降的妖魔是什么芦岂? 我笑而不...
    開封第一講書人閱讀 58,763評(píng)論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮垫蛆,結(jié)果婚禮上盔腔,老公的妹妹穿的比我還像新娘。我一直安慰自己月褥,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,785評(píng)論 6 392
  • 文/花漫 我一把揭開白布瓢喉。 她就那樣靜靜地躺著宁赤,像睡著了一般。 火紅的嫁衣襯著肌膚如雪栓票。 梳的紋絲不亂的頭發(fā)上决左,一...
    開封第一講書人閱讀 51,624評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音走贪,去河邊找鬼佛猛。 笑死,一個(gè)胖子當(dāng)著我的面吹牛坠狡,可吹牛的內(nèi)容都是我干的继找。 我是一名探鬼主播,決...
    沈念sama閱讀 40,358評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼逃沿,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼婴渡!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起凯亮,我...
    開封第一講書人閱讀 39,261評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤边臼,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后假消,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體柠并,經(jīng)...
    沈念sama閱讀 45,722評(píng)論 1 315
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,900評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了臼予。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片鸣戴。...
    茶點(diǎn)故事閱讀 40,030評(píng)論 1 350
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖瘟栖,靈堂內(nèi)的尸體忽然破棺而出葵擎,到底是詐尸還是另有隱情,我是刑警寧澤半哟,帶...
    沈念sama閱讀 35,737評(píng)論 5 346
  • 正文 年R本政府宣布酬滤,位于F島的核電站,受9級(jí)特大地震影響寓涨,放射性物質(zhì)發(fā)生泄漏盯串。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,360評(píng)論 3 330
  • 文/蒙蒙 一戒良、第九天 我趴在偏房一處隱蔽的房頂上張望体捏。 院中可真熱鬧,春花似錦糯崎、人聲如沸几缭。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,941評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽年栓。三九已至,卻和暖如春薄霜,著一層夾襖步出監(jiān)牢的瞬間某抓,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,057評(píng)論 1 270
  • 我被黑心中介騙來泰國打工惰瓜, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留否副,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,237評(píng)論 3 371
  • 正文 我出身青樓崎坊,卻偏偏與公主長得像备禀,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子流强,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,976評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容