學(xué)術(shù)菜雞的論文統(tǒng)計(jì)弄息,請(qǐng)無(wú)視
2015年
#1.Learning both Weights and Connections for Efficient Neural Networks:2745 P3
先確定哪些連接是重要的谨胞,然后prune,在fine tune
L1正則pruning和L2正則 retrain和iterative prune效果好
2016
#2.Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding:4101 CA
prune/fine tune, quantize weights, Huffman coding
3-4x speedup
#3.Dynamic Network Surgery for Efficient DNNs:502 CA
動(dòng)態(tài)的修剪妓笙,并且加入splicing,避免不正確的prune
#2017
#4.Pruning Filters for Efficient ConvNets:1319 P3
prune filter,也就是prune cout
#5.[Pruning Convolutional Neural Networks for Resource Efficient Inference:785 T3
(1)每次prune最不重要的參數(shù)顷歌,迭代
(2)taylor展開(kāi)判斷哪個(gè)該減
(3)每層都要normalization
#6.Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee:79 TA
irregularize prune诫钓,先跳過(guò)
#7.Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon:135 PA
retrain少 設(shè)定一個(gè)laye-wise 的error,計(jì)算它的二階導(dǎo)蹄皱,這和paper#5的區(qū)別?
#8.Runtime Neural Pruning:186 N
根據(jù)輸入览闰,動(dòng)態(tài)的自適應(yīng)的prune cin
自上而下,逐層剪枝
#9.Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning:378 N
基于能耗 channel prune
每層剪枝后巷折,進(jìn)行最小二乘微調(diào)压鉴,快速回復(fù)精度。全部剪枝完后锻拘,再全局反向傳播微調(diào)
#10.ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression :688 CA P3
filter prune,根據(jù)下一層的統(tǒng)計(jì)信息來(lái)prune當(dāng)前層 和paper#5區(qū)別油吭?
#11.Channel Pruning for Accelerating Very Deep Neural Networks:865 CA
這個(gè)和paper#12有啥區(qū)別?署拟?待細(xì)看
#12.Learning Efficient Convolutional Networks Through Network Slimming:663 PA
修剪input channel婉宰,也就是cin,使用BN的scaling來(lái)做判斷卷積channel的重要性
訓(xùn)練時(shí)對(duì)channel的scale參數(shù)進(jìn)行L1正則化推穷,抑制為0
#2018
#13.Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers:136 TA P3
以前假設(shè)較小的權(quán)重或feature map是不重要的心包,該文不基于這個(gè)假設(shè)
訓(xùn)練模型使某個(gè)通道輸出恒定,然后把這個(gè)通道剪掉馒铃?
#14.To prune, or not to prune: exploring the efficacy of pruning for model compression:254 N
大的稀疏網(wǎng)絡(luò)效果優(yōu)于小的密集網(wǎng)絡(luò)
漸進(jìn)式prune,sparsity逐漸增加 訓(xùn)練時(shí)不斷稀疏
#15.Discrimination-aware Channel Pruning for Deep Neural Networks:176 TA
待細(xì)看
#16.Frequency-Domain Dynamic Pruning for Convolutional Neural Networks:27 N
#17.Learning Sparse Neural Networks via Sensitivity-Driven Regularization:21 N
量化輸出對(duì)參數(shù)的敏感性(相關(guān)性)蟹腾,引入一個(gè)正則項(xiàng)痕惋,降低敏感性參數(shù)的絕對(duì)值,直接將低于閾值的設(shè)為0
感覺(jué)之后可以用于層間只適應(yīng)娃殖,待細(xì)看next to read
#18.Amc: Automl for model compression and acceleration on mobile devices:414 T3
使用了AutoMl 有必要之后細(xì)看
#19.Data-Driven Sparse Structure Selection for Deep Neural Networks:169 MA
使用一個(gè)參數(shù)比例因子來(lái)縮放某個(gè)結(jié)構(gòu)(group block neuron)的輸出,正則化稀疏該因子值戳,使用Accelerated Proximal Gradient優(yōu)化問(wèn)題,然后刪除(感覺(jué)和paper#17有點(diǎn)像)
#20.Coreset-Based Neural Network Compression:27 PA
不需要retrain, 有量化和Huffman編碼炉爆。不知道啥玩意
#21.Constraint-Aware Deep Neural Network Compression:24 SkimCA
#22.A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers:111 CA
跳過(guò)
#23.PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning:167 PA
prune參數(shù)述寡,剩余參數(shù)用來(lái)訓(xùn)練新任務(wù)
#24.NISP: Pruning Networks using Neuron Importance Score Propagation:256 N
以前只考慮單層或者兩層的誤差,沒(méi)有考慮對(duì)整個(gè)網(wǎng)絡(luò)的影響叶洞,本文基于一個(gè)統(tǒng)一的目標(biāo),即最小化分類前倒數(shù)第二層的“最終響應(yīng)層”(FRL)中重要響應(yīng)的重構(gòu)誤差禀崖,提出了神經(jīng)元重要性評(píng)分傳播(NISP)算法衩辟,將最終響應(yīng)的重要性得分傳播到網(wǎng)絡(luò)中的每個(gè)神經(jīng)元。
#25.CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization:78 N
同時(shí)減枝和量化 跳過(guò)
#26.“Learning-Compression” Algorithms for Neural Net Pruning:61 N
自動(dòng)學(xué)習(xí)每層prune多少
#27.Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks: 209 PA
(1)不是將刪除濾波器固定為0
(2)能從頭訓(xùn)練波附,邊訓(xùn)邊減
有必要細(xì)看
#28.Accelerating Convolutional Networks via Global & Dynamic Filter Pruning:72 N
全局的動(dòng)態(tài)剪枝艺晴,還可以將誤刪的恢復(fù)
2019
#29.Network Pruning via Transformable Architecture Search:38 PA
既NAS又蒸餾
#30.Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks:39 PA
給channel設(shè)置因子gate,gate為0,則刪除,用taylor展開(kāi)判斷gate為0時(shí)對(duì)損失函數(shù)的影響 全局的剪枝 tick-tock框架
#31.Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask:64 TA
先跳過(guò)
#32.One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers:41 N
先跳過(guò)
#33.Global Sparse Momentum SGD for Pruning Very Deep Neural Networks:15 PA
全局的掸屡,找到每層稀疏比封寞;端到端訓(xùn)練;不需要retrain仅财;效果比lottery ticket好
#34.AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters:12 N
一般修剪權(quán)重會(huì)降低魯棒性狈究,或者需要先驗(yàn)的知識(shí)確定超參數(shù),本文用一個(gè)autoprune的方法盏求,輔助新的更新規(guī)則抖锥,緩解了前面的兩個(gè)問(wèn)題。還是pre-train prune fine-tune三步走
#35.Model Compression with Adversarial Robustness: A Unified Optimization Framework:19 PA
不損害魯棒性的壓縮
#36.MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning:40 PA
#37.Accelerate CNN via Recursive Bayesian Pruning: 14 PA
逐層剪枝碎罚,之后有必要細(xì)看
#38.Adversarial Robustness vs Model Compression, or Both?:15 PA
魯棒性的磅废,先跳過(guò)
#39.Learning Filter Basis for Convolutional Neural Network Compression:9 N
#40.Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration:163 PA
前面的工作認(rèn)為值小的不重要,這需要兩個(gè)前提條件:(1)fliter偏差大(2)最小的norm應(yīng)該更小 本文提出了一種基于幾何中值的filter prune
#41.Towards Optimal Structured CNN Pruning via Generative Adversarial Learning:82 PA
用GAN 跳過(guò)
#42.Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure:37 PA
跳過(guò)
#43.On Implicit Filter Level Sparsity in Convolutional Neural Networks:11 PA
跳過(guò)
#44.Structured Pruning of Neural Networks with Budget-Aware Regularization:20 N
可以控制prune的大小和速度荆烈,還用了蒸餾拯勉,跳過(guò)
#45.Importance Estimation for Neural Network Pruning:80 PA
估計(jì)神經(jīng)元對(duì)最終loss的影響,迭代的刪去最小的那個(gè)憔购。用了一階和二階的泰勒展開(kāi)宫峦,而不是每層的敏感度分析。
感覺(jué)很重要倦始,之后細(xì)看
#46.OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks:12 N
之前的工作只考慮層內(nèi)的關(guān)系斗遏,沒(méi)有考慮層間的關(guān)系,這篇文章考慮了連續(xù)層之間的關(guān)系鞋邑,當(dāng)前層的out和下一層的in
#47.Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search:35 TA
速度和精度上取折衷 跳過(guò)
#48.Variational Convolutional Neural Network Pruning:54 N
變分貝葉斯 不需要retrain
#49.The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks:204 TA
先跳過(guò)
#50.Rethinking the Value of Network Pruning:303 PA
自動(dòng)確定每層稀疏率
剪枝再fine-tune的會(huì)比從頭訓(xùn)練的網(wǎng)絡(luò)要差诵次。剪枝后的網(wǎng)絡(luò)結(jié)構(gòu)不應(yīng)該復(fù)用之前的訓(xùn)練好的模型中的權(quán)重账蓉。所以應(yīng)該從頭訓(xùn)練。
#51.Dynamic Channel Pruning: Feature Boosting and Suppression:50 TA
并不是像單純的剪枝一樣刪除結(jié)構(gòu)逾一,而是通過(guò)FBS動(dòng)態(tài)的放大重要的通道铸本,跳過(guò)不重要的通道。
#52.SNIP: Single-shot Network Pruning based on Connection Sensitivity:121 TA
不是先訓(xùn)練再減枝遵堵,而是先減枝箱玷,再?gòu)念^開(kāi)始訓(xùn)練。還是先做一個(gè)鏈接的敏感度分析陌宿,但是仍然是一個(gè)使用一階泰勒展開(kāi)锡足,然后做softmax,一次性減k個(gè)值
#53.Dynamic Sparse Graph for Efficient Deep Learning:16 CUDA3
可以用來(lái)訓(xùn)練壳坪,有空再看舶得。
#54.Collaborative Channel Pruning for Deep Networks:28 N
剪channel,分析通道對(duì)loss的影響,用ccp逼近Hessian矩陣
#55.Approximated Oracle Filter Pruning for Destructive CNN Width Optimization:28 N
oracle減枝評(píng)估filter的重要性爽蝴,但是時(shí)間復(fù)雜度高沐批,且需要給定結(jié)果寬度,本文通過(guò)近似oracle法來(lái)優(yōu)化
#56.EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis:15 PA
基于Kronecker因子特征基(KFE)的網(wǎng)絡(luò)重參數(shù)化方法蝎亚,并在此基礎(chǔ)上應(yīng)用了基于Hessian的結(jié)構(gòu)化剪枝方法九孩。
#57.EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning:1 PA
filter減枝,先跳過(guò)
#58.DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation:0 N
可以讓每層稀疏率可微发框,采用梯度的方式搜索稀疏率躺彬,而且可以train from scratch
#59.DHP: Differentiable Meta Pruning via HyperNetworks:2 PA
automl跳過(guò)
#60.Meta-Learning with Network Pruning:0 N
把剪枝用于元學(xué)習(xí),跳過(guò)
#61.Accelerating CNN Training by Pruning Activation Gradients:1 N
反向傳播中的激活梯度大部分很小缤底,使用一種隨機(jī)剪枝的方式對(duì)激活梯度進(jìn)行剪枝顾患,剪枝閾值通過(guò)分布確定,理論分析个唧。
之后細(xì)看
#62.DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search:1 N
NAS跳過(guò)
#63.Differentiable Joint Pruning and Quantization for Hardware Efficiency:0 N
聯(lián)合量化剪枝江解,跳過(guò)
#64.Channel Pruning via Automatic Structure Search:5 PA
跳過(guò)
#65.Adversarial Neural Pruning with Latent Vulnerability Suppression:3 N
跳過(guò)
#66.Proving the Lottery Ticket Hypothesis: Pruning is All You Need:14 N
加強(qiáng)的彩票假設(shè)
#67.Soft Threshold Weight Reparameterization for Learnable Sparsity:6 PA
自動(dòng)調(diào)節(jié)稀疏的閾值
#68.Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection:7 N
不是刪除網(wǎng)絡(luò)中的神經(jīng)元,而是貪婪的從空網(wǎng)絡(luò)中添加網(wǎng)絡(luò)中的神經(jīng)元
#69.Operation-Aware Soft Channel Pruning using Differentiable Masks:0 N
跳過(guò)
#70.DropNet: Reducing Neural Network Complexity via Iterative Pruning:0 N
每次刪去訓(xùn)練樣本平均后激活值最低的那個(gè)點(diǎn)
#71.Towards Efficient Model Compression via Learned Global Ranking:1 F
學(xué)習(xí)跨不同層的濾波器的全局排名徙歼,通過(guò)修剪排名靠后的濾波器來(lái)獲得一組具有不同精度/延遲權(quán)衡的結(jié)構(gòu)
#72.HRank: Filter Pruning using High-Rank Feature Map:18 PA
跳過(guò)
#73.Neural Network Pruning with Residual-Connections and Limited-Data:2 N
跳過(guò)
#74.Multi-Dimensional Pruning: A Unified Framework for Model Compression:1 N
跳過(guò)
#75.DMCP: Differentiable Markov Channel Pruning for Neural Networks:0 TA
跳過(guò)
#76.Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression:8 PA
低秩分解和剪枝一起用,全局壓縮
#77.Few Sample Knowledge Distillation for Efficient Network Compression:8 N
蒸餾犁河,跳過(guò)
#78.Discrete Model Compression With Resource Constraint for Deep Neural Networks:1 N
跳過(guò)
#79.Structured Compression by Weight Encryption for Unstructured Pruning and Quantization:2 N
對(duì)非結(jié)構(gòu)化稀疏的權(quán)重進(jìn)行加密,推理的時(shí)候用異或門(mén)解碼
#80.Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration:2 N
每一層自適應(yīng)的選擇不同的剪枝
#81.APQ: Joint Search for Network Architecture, Pruning and Quantization Policy:7
聯(lián)合NAS,prune,quantization
#82.Comparing Rewinding and Fine-tuning in Neural Network Pruning:23 TA
rewind 和 fine-tune兩種方法的對(duì)比
#83.A Signal Propagation Perspective for Pruning Neural Networks at Initialization:14 N
解釋了為什么修剪只初始化魄梯,還沒(méi)開(kāi)始訓(xùn)練的網(wǎng)絡(luò)桨螺,這種方法是有效的。
#84.ProxSGD: Training Structured Neural Networks under Regularization and Constraints:1 TA PA
跳過(guò)
#85.One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation:2 N
RNN的一次性剪枝
#86.Lookahead: A Far-sighted Alternative of Magnitude-based Pruning:5 PA
基于基于幅值的剪枝確實(shí)能使單層線性算子的Frobenius失真最小化酿秸,我們將單層優(yōu)化擴(kuò)展為多層優(yōu)化灭翔,提出了一種簡(jiǎn)單的剪枝方法,即超前剪枝
#87.Dynamic Model Pruning with Feedback:9 N
通過(guò)反饋重新激活早期刪除的權(quán)重
#89.Provable Filter Pruning for Efficient Neural Networks:9 N
跳過(guò)
#90.Data-Independent Neural Pruning via Coresets:5 N
跳過(guò)
#91.AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates:13 N
跳過(guò)
#92.DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks
用所獲得的信息作為指導(dǎo)辣苏,我們首先提出了一種新的塊最大加權(quán)掩蔽(BMWM)方法肝箱,它可以有效地保留顯著的權(quán)重哄褒,同時(shí)對(duì)權(quán)重矩陣施加高度的正則性。作為進(jìn)一步的優(yōu)化煌张,我們提出了一種密度自適應(yīng)規(guī)則塊(DARB)剪枝方法