人臉識(shí)別數(shù)據(jù)集

https://github.com/betars/Face-Resources

+

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

DeepFace.A work from Facebook.

FaceNet.A work from Google.

One Millisecond Face Alignment with an Ensemble of Regression Trees. Dlib implements the algorithm.

DeepID

DeepID2

DeepID3

Learning Face Representation from Scratch

Face Search at Scale: 80 Million Gallery

A Discriminative Feature Learning Approach for Deep Face Recognition

NormFace: L2 Hypersphere Embedding for Face Verification.* attention: model released !*

SphereFace: Deep Hypersphere Embedding for Face Recognition

Datasets

CASIA WebFace Database. 10,575 subjects and 494,414 images

Labeled Faces in the Wild.13,000 images and 5749 subjects

Large-scale CelebFaces Attributes (CelebA) Dataset202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.

MSRA-CFW. 202,792 images and 1,583 subjects.

MegaFace Dataset1 Million Faces for Recognition at Scale 690,572 unique people

FaceScrub. A Dataset With Over 100,000 Face Images of 530 People.

FDDB.Face Detection and Data Set Benchmark. 5k images.

AFLW.Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.

AFW. Annotated Faces in the Wild. ~1k images. 10.3D Mask Attack Dataset. 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)

Audio-visual database for face and speaker recognition.Mobile Biometry MOBIOhttp://www.mobioproject.org/

BANCA face and voice database. Univ of Surrey

Binghampton Univ 3D static and dynamic facial expression database. (Lijun Yin, Peter Gerhardstein and teammates)

The BioID Face Database. BioID group

Biwi 3D Audiovisual Corpus of Affective Communication. 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.

Cohn-Kanade AU-Coded Expression Database. 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.

CMU/MIT Frontal Faces. Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.

AT&T Database of Faces400 faces of 40 people (10 images per people)

Trained Model

openface. Face recognition with Google's FaceNet deep neural network using Torch.

VGG-Face. VGG-Face CNN descriptor. Impressed embedding loss.

SeetaFace Engine. SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.

Caffe-face- Caffe Face is developed for face recognition using deep neural networks.

Norm-Face- Norm Face, finetuned fromcenter-faceandLight-CNN

Tutorial

Deep Learning for Face Recognition. Shiguan Shan, Xiaogang Wang, and Ming yang.

Software

OpenCV. With some trained face detector models.

dlib. Dlib implements a state-of-the-art of face Alignment algorithm.

ccv. With a state-of-the-art frontal face detector

libfacedetection. A binary library for face detection in images.

SeetaFaceEngine. An open source C++ face recognition engine.

##Frameworks

Caffe

Torch7

Theano

cuda-convnet

MXNET

Tensorflow

tiny-dnn

Miscellaneous

faceswapFace swapping with Python, dlib, and OpenCV

Facial Keypoints DetectionCompetition on Kaggle.

An implementation of Face Alignment at 3000fps via Local Binary Features

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末饰抒,一起剝皮案震驚了整個(gè)濱河市眠砾,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌在张,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,941評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件蚌父,死亡現(xiàn)場離奇詭異侠畔,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)竿痰,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,397評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門脆粥,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人影涉,你說我怎么就攤上這事变隔。” “怎么了蟹倾?”我有些...
    開封第一講書人閱讀 165,345評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵匣缘,是天一觀的道長。 經(jīng)常有香客問我鲜棠,道長肌厨,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,851評(píng)論 1 295
  • 正文 為了忘掉前任豁陆,我火速辦了婚禮柑爸,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘盒音。我一直安慰自己表鳍,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,868評(píng)論 6 392
  • 文/花漫 我一把揭開白布祥诽。 她就那樣靜靜地躺著譬圣,像睡著了一般。 火紅的嫁衣襯著肌膚如雪原押。 梳的紋絲不亂的頭發(fā)上胁镐,一...
    開封第一講書人閱讀 51,688評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音诸衔,去河邊找鬼盯漂。 笑死,一個(gè)胖子當(dāng)著我的面吹牛笨农,可吹牛的內(nèi)容都是我干的就缆。 我是一名探鬼主播,決...
    沈念sama閱讀 40,414評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼谒亦,長吁一口氣:“原來是場噩夢啊……” “哼竭宰!你這毒婦竟也來了空郊?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,319評(píng)論 0 276
  • 序言:老撾萬榮一對情侶失蹤切揭,失蹤者是張志新(化名)和其女友劉穎狞甚,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體廓旬,經(jīng)...
    沈念sama閱讀 45,775評(píng)論 1 315
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡哼审,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,945評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了孕豹。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片涩盾。...
    茶點(diǎn)故事閱讀 40,096評(píng)論 1 350
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖励背,靈堂內(nèi)的尸體忽然破棺而出春霍,到底是詐尸還是另有隱情,我是刑警寧澤叶眉,帶...
    沈念sama閱讀 35,789評(píng)論 5 346
  • 正文 年R本政府宣布址儒,位于F島的核電站,受9級(jí)特大地震影響竟闪,放射性物質(zhì)發(fā)生泄漏离福。R本人自食惡果不足惜杖狼,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,437評(píng)論 3 331
  • 文/蒙蒙 一炼蛤、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧蝶涩,春花似錦理朋、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,993評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至熄攘,卻和暖如春兽愤,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背挪圾。 一陣腳步聲響...
    開封第一講書人閱讀 33,107評(píng)論 1 271
  • 我被黑心中介騙來泰國打工浅萧, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人哲思。 一個(gè)月前我還...
    沈念sama閱讀 48,308評(píng)論 3 372
  • 正文 我出身青樓洼畅,卻偏偏與公主長得像,于是被迫代替她去往敵國和親棚赔。 傳聞我的和親對象是個(gè)殘疾皇子帝簇,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,037評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容

  • 這一次徘郭,我是真正明白了“出來混的,遲早都要還的丧肴〔腥啵”對于我這種要技術(shù)沒技術(shù),要能力沒能力的初級(jí)新媒體運(yùn)營人員來說芋浮,這...
    小安日志閱讀 282評(píng)論 0 0
  • 確切的說途样,運(yùn)球過人技術(shù)在中國的基層江醇、校園籃球文化思想中占據(jù)著重要位置。大家也許都知道三威脅的進(jìn)攻技術(shù)何暇。原本它的威脅...
    籃球伊甸園閱讀 495評(píng)論 0 2
  • 以前的我裆站,常常用盡各種辦法条辟,敷面膜,內(nèi)服宏胯,外面買的不放心羽嫡,自己研發(fā)。 這中間肩袍,確實(shí)有過皮膚好的時(shí)候杭棵,那種好,不需要...
    蒼穹一君閱讀 235評(píng)論 0 1