OpenFOAM SGS model

SGS kinetic energy k=\frac{1}{2}(\overline{{\widetilde{v}}^2}-{\widetilde{v}}^2), where \widetilde{v} is the filtered density weighted velocity.
The following assumptions for the SGS density weighted stress tensor \mathrm{B} and the filtered deviatoric part of the rate of strain tensor \widetilde{D}_D are used:
\mathrm{B}=\frac{2}{3}\overline{\rho}k\mathrm{I}-2\mu_B\widetilde{D}_D \tag{1} \widetilde{D}_D=\widetilde{D}-\frac{1}{3}(tr\widetilde{D}\mathrm{I}) \tag{2} \widetilde{D}=\frac{1}{2}(grad\widetilde{v}+grad\widetilde{v}^T) \tag{3} \mu_B=c_k\overline{\rho}\sqrt{k}\vartriangle \tag{4} where \mathrm{I} is the unit tensor, \overline{\rho} is the filtered density, \mu_Bis the SGS viscosity and \vartrianglerepresents the top-hat filter with a characteristic filter width estimated as the cubic root of the CV volume. An exact balance equation for k can be derived, but some terms must be modeled. Instead, following Fureby this balance equation can be replaced by the a posteriori modeled equation:
\partial_t(\overline{\rho}k)+div(\overline{\rho}\widetilde{v}k)=F_p+F_d-F_\varepsilon \tag{5} F_p=-B\cdot D,\ F_d=div((\mu_B+\mu)grad\ k),\ F_\varepsilon=c_\varepsilon\overline{\rho}k^{\frac{3}{2}}/\vartriangle where F_pis the production, F_ddiffusion and F_\varepsilondissipation terms, respectively.
The conventional Smagorinsky SGS model can be recovered from Eq. 5 by assuming local equilibrium, F_p=F_\varepsilon. Thus, the SGS kinetic energy can be computed from the following relation:B\cdot \widetilde{D}+c_\varepsilon\overline{\rho}k^{3/2}/\vartriangle=0 \tag{6}
Using Eq. 1 and introducing the coefficients a=\frac{c_\varepsilon}{\vartriangle},\ b=\frac{2}{3}tr\widetilde{D},\ c=-2c_k\vartriangle\widetilde{D}_D:\widetilde{D} \tag{7} The relation in Eq. 6 can be reformulated by the quadratic equation to the relation for k k=(\frac{-b+\sqrt{b^2-4ac}}{2a})^2\tag{8}The models constant are: c_k=0.02andc_\varepsilon=1.048. The relationship between the classical C_s constant and the default constants C_k and C_\varepsilon from the Smagorinsky model implementation in OpenFOAM is C_s=(c^3_k/c_\varepsilon)^{1/4}, which leads to a value C_s=0.053. This value is slightly lower than the minimum conventional limit C_s=0.065. It is worth noting that this relation can be recovered from the classical assumption for the eddy-viscosity \mu_B=(C_s\vartriangle)^2\overline{\rho}\|\widetilde{D}\| and Eq. 4.
The dynamic model for the k equation can be derived using the Germano identity \mathrm{L} with another filter kernel of width \overline{\vartriangle}=2\vartriangle. Again, one can find the theoretical background in the studies performed by Fureby. Here, we will concentrate on the model implementation only.
The model coefficient c_k can not be removed from filtering and hence, a variational formulation is used to evaluate this: c_k=\frac{\langle L_D\cdot M\rangle}{\langle M\cdot M\rangle}\tag{9} where M=\vartriangle(\overline{k^{1/2}\widetilde{D}}-2(K+\overline{k})^{1/2}\overline{\widetilde{D}}), L_D=(\overline{\widetilde{v}^2}-\overline{\widetilde{v}}^2)_D and K=\frac{1}{2}(\overline{\|\widetilde{v}\|^2}-\|\overline{\widetilde{v}}\|^2).
The second coefficient c_\varepsilon is defined as c_\varepsilon=\frac{\langle\zeta\cdot MM\rangle}{\langle MM\cdot MM\rangle}\tag{10} where \zeta=2\vartriangle c_k(\overline{k^{1/2}\|\widetilde{D}\|^2}-2(K+\overline{k})^{1/2}\|\overline{\widetilde{D}}\|^2) and MM=(K+\overline{k})^{3/2}/2\vartriangle-\overline{k^{3/2}}/\vartriangle.

Reference:Lysenko, D.A., I.S., E., K. E., R., 2012. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow Turbulence & Combustion 89, 491–518.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市场钉,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,122評論 6 505
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件葵腹,死亡現(xiàn)場離奇詭異,居然都是意外死亡屿岂,警方通過查閱死者的電腦和手機践宴,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,070評論 3 395
  • 文/潘曉璐 我一進店門爷怀,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事烤惊∏巧罚” “怎么了?”我有些...
    開封第一講書人閱讀 164,491評論 0 354
  • 文/不壞的土叔 我叫張陵柒室,是天一觀的道長渡贾。 經(jīng)常有香客問我雄右,道長空骚,這世上最難降的妖魔是什么擂仍? 我笑而不...
    開封第一講書人閱讀 58,636評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮逢渔,結果婚禮上,老公的妹妹穿的比我還像新娘复局。我一直安慰自己粟判,他們只是感情好亿昏,可當我...
    茶點故事閱讀 67,676評論 6 392
  • 文/花漫 我一把揭開白布角钩。 她就那樣靜靜地躺著,像睡著了一般递礼。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上脊髓,一...
    開封第一講書人閱讀 51,541評論 1 305
  • 那天栅受,我揣著相機與錄音将硝,去河邊找鬼屏镊。 笑死,一個胖子當著我的面吹牛而芥,可吹牛的內容都是我干的。 我是一名探鬼主播棍丐,決...
    沈念sama閱讀 40,292評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼沧踏,長吁一口氣:“原來是場噩夢啊……” “哼稀余!你這毒婦竟也來了悦冀?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 39,211評論 0 276
  • 序言:老撾萬榮一對情侶失蹤盒蟆,失蹤者是張志新(化名)和其女友劉穎师骗,沒想到半個月后历等,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體辟癌,經(jīng)...
    沈念sama閱讀 45,655評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 37,846評論 3 336
  • 正文 我和宋清朗相戀三年寡夹,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片厂置。...
    茶點故事閱讀 39,965評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖昵济,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情访忿,我是刑警寧澤,帶...
    沈念sama閱讀 35,684評論 5 347
  • 正文 年R本政府宣布迹恐,位于F島的核電站,受9級特大地震影響系草,放射性物質發(fā)生泄漏。R本人自食惡果不足惜找都,卻給世界環(huán)境...
    茶點故事閱讀 41,295評論 3 329
  • 文/蒙蒙 一廊酣、第九天 我趴在偏房一處隱蔽的房頂上張望能耻。 院中可真熱鬧,春花似錦晓猛、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,894評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽磕秤。三九已至,卻和暖如春市咆,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背蒙兰。 一陣腳步聲響...
    開封第一講書人閱讀 33,012評論 1 269
  • 我被黑心中介騙來泰國打工芒篷, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留搜变,地道東北人针炉。 一個月前我還...
    沈念sama閱讀 48,126評論 3 370
  • 正文 我出身青樓,卻偏偏與公主長得像糊识,于是被迫代替她去往敵國和親摔蓝。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 44,914評論 2 355