GoLang中的機(jī)器學(xué)習(xí)庫

根據(jù)不同的算法和方法分門別類收集了GoLang的機(jī)器學(xué)習(xí)資源庫列表。
Generalized Machine Learning Libraries:

GoML - https://github.com/cdipaolo/goml - On-line Machine Learning in Go that includes libraries for Generalized Linear Models (Linear Regression, Logistic Regression etc), Perceptron, Clustering (K Means, K Nearest Neibhours...) & Text Classification (Multinomial & term frequency...)

Machine Learning libraries for Go Lang :https://github.com/alonsovidales/go_ml: Implemented Algorithms include Linear Regression, Logistic Regression, Neural Networks, Collaborative Filtering & Gaussian Multivariate Distribution for anomaly detection systems

MLGo - https://code.google.com/p/mlgo/ - Algorithms implemented includeGaussian mixture model, k-means, k-medians, k-medoids, single-linkage hierarchical clustering

GoLearn: - GoLearn is a 'batteries included' machine learning library for Go. Simplicity, paired with customisability, is the goal.

Neural Networks

Neural Networks written in go : https://github.com/goml/gobrain

Go Fann - https://github.com/white-pony/go-fann - Go bindings for FANN, library for artificial neural networks

https://github.com/schuyler/neural-go - Multi-Layer Perceptron Neural Network

Genetic Algorithms library written in Go / golang -https://github.com/thoj/go-galib

Linear Algebra:

Linear Algebra for Go & Matrix Library:

Mat64: Package mat64 provides basic linear algebra operations for float64 matrices. mat64 provides a set of concrete types that implement different classes of matrices (Dense, Symmetric, etc.) and operations on them. In most cases, an operation which results in a matrix value is a method on the value being produced.

BLAS Implementation for Go: The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations

https://github.com/danieldk/golinear - liblinear bindings for Go

Probability Distribution Functions

http://godoc.org/code.google.com/p/probab

https://github.com/e-dard/godist

Decision Trees:

Hector https://github.com/xlvector/hector - Golang machine learning lib. Currently, it can be used to solve binary classification problems.Logistic Regression , Factorized Machine , CART, Random Forest, Random Decision Tree, Gradient Boosting Decision Tree & Neural Network

Decision Trees in Go - https://github.com/ajtulloch/decisiontrees - Gradient Boosting, Random Forests, etc. implemented in Go

CloudForest - https://github.com/ryanbressler/CloudForest - Fast, flexible, multi-threaded ensembles of decision trees for machine learning in pure Go (golang). CloudForest allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical / categorical data with missing values.

Bayesian Classifiers:

https://github.com/jbrukh/bayesian - Perform naive Bayesian classification into an arbitrary number of classes on sets of strings.

https://github.com/eaigner/shield - Bayesian text classifier with flexible tokenizers and storage backends for Go

Recommendation Engines in Go

Collaborative Filtering (CF) Algorithms in Go -https://github.com/timkaye11/goRecommend

Recommendation engine for Go - https://github.com/muesli/regommend

Others

https://github.com/daviddengcn/go-pr - Pattern Recognition in Go.

SVM Library in Go

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市逝薪,隨后出現(xiàn)的幾起案子隅要,更是在濱河造成了極大的恐慌,老刑警劉巖董济,帶你破解...
    沈念sama閱讀 211,561評論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件步清,死亡現(xiàn)場離奇詭異,居然都是意外死亡感局,警方通過查閱死者的電腦和手機(jī)尼啡,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,218評論 3 385
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來询微,“玉大人崖瞭,你說我怎么就攤上這事〕琶” “怎么了书聚?”我有些...
    開封第一講書人閱讀 157,162評論 0 348
  • 文/不壞的土叔 我叫張陵,是天一觀的道長藻雌。 經(jīng)常有香客問我雌续,道長,這世上最難降的妖魔是什么胯杭? 我笑而不...
    開封第一講書人閱讀 56,470評論 1 283
  • 正文 為了忘掉前任驯杜,我火速辦了婚禮,結(jié)果婚禮上做个,老公的妹妹穿的比我還像新娘鸽心。我一直安慰自己,他們只是感情好居暖,可當(dāng)我...
    茶點故事閱讀 65,550評論 6 385
  • 文/花漫 我一把揭開白布顽频。 她就那樣靜靜地躺著,像睡著了一般太闺。 火紅的嫁衣襯著肌膚如雪糯景。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,806評論 1 290
  • 那天省骂,我揣著相機(jī)與錄音蟀淮,去河邊找鬼。 笑死钞澳,一個胖子當(dāng)著我的面吹牛怠惶,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播略贮,決...
    沈念sama閱讀 38,951評論 3 407
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了逃延?” 一聲冷哼從身側(cè)響起览妖,我...
    開封第一講書人閱讀 37,712評論 0 266
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎揽祥,沒想到半個月后讽膏,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,166評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡拄丰,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,510評論 2 327
  • 正文 我和宋清朗相戀三年府树,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片料按。...
    茶點故事閱讀 38,643評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡奄侠,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出载矿,到底是詐尸還是另有隱情垄潮,我是刑警寧澤,帶...
    沈念sama閱讀 34,306評論 4 330
  • 正文 年R本政府宣布闷盔,位于F島的核電站弯洗,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏逢勾。R本人自食惡果不足惜牡整,卻給世界環(huán)境...
    茶點故事閱讀 39,930評論 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望溺拱。 院中可真熱鬧逃贝,春花似錦、人聲如沸盟迟。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,745評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽攒菠。三九已至迫皱,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間辖众,已是汗流浹背卓起。 一陣腳步聲響...
    開封第一講書人閱讀 31,983評論 1 266
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留凹炸,地道東北人戏阅。 一個月前我還...
    沈念sama閱讀 46,351評論 2 360
  • 正文 我出身青樓,卻偏偏與公主長得像啤它,于是被迫代替她去往敵國和親奕筐。 傳聞我的和親對象是個殘疾皇子踢涌,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,509評論 2 348

推薦閱讀更多精彩內(nèi)容