深層次網(wǎng)絡(luò)訓(xùn)練瓶頸:梯度消失乾颁,網(wǎng)絡(luò)退化
深度卷積網(wǎng)絡(luò)自然的整合了低中高不同層次的特征棚品,特征的層次可以靠加深網(wǎng)絡(luò)的層次來豐富。從而杭隙,在構(gòu)建卷積網(wǎng)絡(luò)時(shí)哟绊,網(wǎng)絡(luò)的深度越高,可抽取的特征層次就越豐富痰憎。所以一般我們會(huì)傾向于使用更深層次的網(wǎng)絡(luò)結(jié)構(gòu)票髓,以便取得更高層次的特征。但是在使用深層次的網(wǎng)絡(luò)結(jié)構(gòu)時(shí)我們會(huì)遇到兩個(gè)問題铣耘,梯度消失洽沟,梯度爆炸問題和網(wǎng)絡(luò)退化的問題。
但是當(dāng)使用更深層的網(wǎng)絡(luò)時(shí)蜗细,會(huì)發(fā)生梯度消失裆操、爆炸問題怒详,這個(gè)問題很大程度通過標(biāo)準(zhǔn)的初始化和正則化層來基本解決,這樣可以確保幾十層的網(wǎng)絡(luò)能夠收斂踪区,但是隨著網(wǎng)絡(luò)層數(shù)的增加昆烁,梯度消失或者爆炸的問題仍然存在。同時(shí)還存在著網(wǎng)絡(luò)退化問題如(圖1)缎岗,在神經(jīng)網(wǎng)絡(luò)可以收斂的前提下静尼,隨著網(wǎng)絡(luò)深度增加,網(wǎng)絡(luò)的表現(xiàn)先是逐漸增加至飽和传泊,然后迅速下降鼠渺。網(wǎng)絡(luò)退化問題不是過擬合導(dǎo)致的,即便在模型訓(xùn)練過程中或渤,同樣的訓(xùn)練輪次下系冗,退化的網(wǎng)絡(luò)也比稍淺層的網(wǎng)絡(luò)的訓(xùn)練錯(cuò)誤更高。
這時(shí)候提出了ResNet薪鹦,很大程度上解決了當(dāng)今深度網(wǎng)絡(luò)頭疼的網(wǎng)絡(luò)退化問題和梯度消失問題掌敬。
批量歸一化(BatchNormalization)
對(duì)輸入的標(biāo)準(zhǔn)化(淺層模型)
處理后的任意一個(gè)特征在數(shù)據(jù)集中所有樣本上的均值為0、標(biāo)準(zhǔn)差為1池磁。
標(biāo)準(zhǔn)化處理輸入數(shù)據(jù)使各個(gè)特征的分布相近
批量歸一化(深度模型)
利用小批量上的均值和標(biāo)準(zhǔn)差奔害,不斷調(diào)整神經(jīng)網(wǎng)絡(luò)中間輸出,從而使整個(gè)神經(jīng)網(wǎng)絡(luò)在各層的中間輸出的數(shù)值更穩(wěn)定地熄。
1.對(duì)全連接層做批量歸一化
位置:全連接層中的仿射變換和激活函數(shù)之間华临。
全連接:
批量歸一化:
這?? > 0是個(gè)很小的常數(shù)端考,保證分母大于0
引入可學(xué)習(xí)參數(shù):拉伸參數(shù)γ和偏移參數(shù)β雅潭。若和
,批量歸一化無效却特。
2.對(duì)卷積層做批量歸?化
位置:卷積計(jì)算之后扶供、應(yīng)?激活函數(shù)之前。
如果卷積計(jì)算輸出多個(gè)通道裂明,我們需要對(duì)這些通道的輸出分別做批量歸一化椿浓,且每個(gè)通道都擁有獨(dú)立的拉伸和偏移參數(shù)。
計(jì)算:對(duì)單通道闽晦,batchsize=m,卷積計(jì)算輸出=pxq
對(duì)該通道中m×p×q個(gè)元素同時(shí)做批量歸一化,使用相同的均值和方差扳碍。
3.預(yù)測時(shí)的批量歸?化
訓(xùn)練:以batch為單位,對(duì)每個(gè)batch計(jì)算均值和方差。
預(yù)測:用移動(dòng)平均估算整個(gè)訓(xùn)練數(shù)據(jù)集的樣本均值和方差仙蛉。
從零實(shí)現(xiàn)
import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision
import sys
sys.path.append("/home/kesci/input/")
import d2lzh1981 as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
# 判斷當(dāng)前模式是訓(xùn)練模式還是預(yù)測模式
if not is_training:
# 如果是在預(yù)測模式下笋敞,直接使用傳入的移動(dòng)平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4) #在表達(dá)式條件為 false 的時(shí)候觸發(fā)異常,X.shape為二維(全連接層)或者四維(卷積層)
if len(X.shape) == 2:
# 使用全連接層的情況,計(jì)算特征維上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二維卷積層的情況荠瘪,計(jì)算通道維上(axis=1)的均值和方差液样。這里我們需要保持
# X的形狀以便后面可以做廣播運(yùn)算
#X是三維的:(channel, height, width)
# 假設(shè)輸入的形狀是(m, n, k):
#-如果指定axis(dim)=0, 輸出的size就是(1, n, k)或者(n, k)
#-如果指定axis(dim)=1, 輸出的size就是(m, 1, k)或者(m, k)
#-如果指定axis(dim)=2, 輸出的size就是(m, n, 1)或者(m, n).
mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
# dim=0,2,3振亮,則最終的mean是除了dim=1的通道維數(shù)不為1,其它都為1.
#對(duì)這些通道的輸出分別做批量歸一化鞭莽,且每個(gè)通道都擁有獨(dú)立的拉伸和偏移參數(shù)坊秸,并均為標(biāo)量
var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
# 訓(xùn)練模式下用當(dāng)前的均值和方差做標(biāo)準(zhǔn)化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移動(dòng)平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 拉伸和偏移
return Y, moving_mean, moving_var
class BatchNorm(nn.Module):
def __init__(self, num_features, num_dims):
super(BatchNorm, self).__init__()
if num_dims == 2:
shape = (1, num_features) #全連接層輸出神經(jīng)元
else:
shape = (1, num_features, 1, 1) #通道數(shù)
# 參與求梯度和迭代的拉伸和偏移參數(shù),分別初始化成0和1
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 不參與求梯度和迭代的變量澎怒,全在內(nèi)存上初始化成0
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.zeros(shape)
def forward(self, X):
# 如果X不在內(nèi)存上褒搔,將moving_mean和moving_var復(fù)制到X所在顯存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新過的moving_mean和moving_var, Module實(shí)例的traning屬性默認(rèn)為true, 調(diào)用.eval()后設(shè)成false
Y, self.moving_mean, self.moving_var = batch_norm(self.training,
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
基于LeNet的應(yīng)用
net = nn.Sequential(
nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
BatchNorm(6, num_dims=4),
nn.Sigmoid(),
nn.MaxPool2d(2, 2), # kernel_size, stride
nn.Conv2d(6, 16, 5),
BatchNorm(16, num_dims=4),
nn.Sigmoid(),
nn.MaxPool2d(2, 2),
d2l.FlattenLayer(),
nn.Linear(16*4*4, 120),
BatchNorm(120, num_dims=2),
nn.Sigmoid(),
nn.Linear(120, 84),
BatchNorm(84, num_dims=2),
nn.Sigmoid(),
nn.Linear(84, 10)
)
print(net)
#batch_size = 256
##cpu要調(diào)小batchsize
batch_size=16
def load_data_fashion_mnist(batch_size, resize=None, root='/home/kesci/input/FashionMNIST2065'):
"""Download the fashion mnist dataset and then load into memory."""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=2)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=2)
return train_iter, test_iter
train_iter, test_iter = load_data_fashion_mnist(batch_size)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
簡潔實(shí)現(xiàn)
net = nn.Sequential(
nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
nn.BatchNorm2d(6),
nn.Sigmoid(),
nn.MaxPool2d(2, 2), # kernel_size, stride
nn.Conv2d(6, 16, 5),
nn.BatchNorm2d(16),
nn.Sigmoid(),
nn.MaxPool2d(2, 2),
d2l.FlattenLayer(),
nn.Linear(16*4*4, 120),
nn.BatchNorm1d(120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.Sigmoid(),
nn.Linear(84, 10)
)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
殘差網(wǎng)絡(luò)(ResNet)
深度學(xué)習(xí)的問題:深度CNN網(wǎng)絡(luò)達(dá)到一定深度后再一味地增加層數(shù)并不能帶來進(jìn)一步地分類性能提高,反而會(huì)招致網(wǎng)絡(luò)收斂變得更慢喷面,準(zhǔn)確率也變得更差星瘾。而按照常理,假設(shè)存在當(dāng)前的某個(gè)s層的網(wǎng)絡(luò) f 是當(dāng)前最優(yōu)的網(wǎng)絡(luò)惧辈,那么可以構(gòu)造一個(gè)更深的網(wǎng)絡(luò)琳状,其最后幾層僅是該網(wǎng)絡(luò)f第s層輸出的恒等映射(Identity Mapping),就可以取得與 f 一致的結(jié)果盒齿;假設(shè)s層還不是當(dāng)前的“最佳層數(shù)”念逞,那么就存在比s層更深的網(wǎng)絡(luò)可以取得更好的結(jié)果”呶蹋可以推出翎承,與淺層網(wǎng)絡(luò)相比,更深的網(wǎng)絡(luò)的表現(xiàn)不應(yīng)該更差符匾。由此得出的合理猜測應(yīng)該是多層非線性網(wǎng)絡(luò)無法逼近恒等映射網(wǎng)絡(luò)叨咖。[2]
Resnet通過在一個(gè)淺層網(wǎng)絡(luò)基礎(chǔ)上疊加y=x的層(稱identity mappings,恒等映射)啊胶,可以讓增加網(wǎng)絡(luò)的深度而不產(chǎn)生網(wǎng)路退化甸各。
殘差塊(Residual Block)
恒等映射:
左邊:f(x)=x
右邊:f(x)-x=0 (易于捕捉恒等映射的細(xì)微波動(dòng))
在殘差塊中,輸?可通過跨層的數(shù)據(jù)線路更快地向前傳播焰坪。
1x1的卷積層用來修改通道數(shù)痴晦,即進(jìn)行升維或者降維。[3]
(In Convolutional Nets, there is no such thing as “fully-connected layers”. There are only convolution layers with 1x1 convolution kernels and a full connection table)
class Residual(nn.Module): # 本類已保存在d2lzh_pytorch包中方便以后使用
#可以設(shè)定輸出通道數(shù)琳彩、是否使用額外的1x1卷積層來修改通道數(shù)以及卷積層的步幅。
def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
super(Residual, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return F.relu(Y + X)
blk = Residual(3, 3)
X = torch.rand((4, 3, 6, 6))
blk(X).shape # torch.Size([4, 3, 6, 6])
blk = Residual(3, 6, use_1x1conv=True, stride=2)
blk(X).shape # torch.Size([4, 6, 3, 3])
ResNet模型
卷積(64,7x7,3)
批量一體化
最大池化(3x3,2)
殘差塊x4 (通過步幅為2的殘差塊在每個(gè)模塊之間減小高和寬)
全局平均池化
全連接
net = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
if first_block:
assert in_channels == out_channels # 第一個(gè)模塊的通道數(shù)同輸入通道數(shù)一致
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
else:
blk.append(Residual(out_channels, out_channels))
return nn.Sequential(*blk)
net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("global_avg_pool", d2l.GlobalAvgPool2d()) # GlobalAvgPool2d的輸出: (Batch, 512, 1, 1)
net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(512, 10))) #全連接層輸出
X = torch.rand((1, 1, 224, 224))
for name, layer in net.named_children():
X = layer(X)
print(name, ' output shape:\t', X.shape)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
參考
【1】. Deep Residual Learning for Image Recognition
【2】. https://zhuanlan.zhihu.com/p/80226180
【3】. https://iamaaditya.github.io/2016/03/one-by-one-convolution