explain 使用精簡

索引類似大學(xué)圖書館建書目索引俗扇,可以提高數(shù)據(jù)檢索的效率驶社,降低數(shù)據(jù)庫的IO成本奔脐。MySQL在300萬條記錄左右性能開始逐漸下降,雖然官方文檔說500~800w記錄星澳,所以大數(shù)據(jù)量建立索引是非常有必要的疚顷。MySQL提供了Explain,用于顯示SQL執(zhí)行的詳細(xì)信息禁偎,可以進(jìn)行索引的優(yōu)化腿堤。

一、導(dǎo)致SQL執(zhí)行慢的原因:

  1.硬件問題如暖。如網(wǎng)絡(luò)速度慢笆檀,內(nèi)存不足,I/O吞吐量小盒至,磁盤空間滿了等酗洒。

  2.沒有索引或者索引失效士修。(一般在互聯(lián)網(wǎng)公司,DBA會在半夜把表鎖了樱衷,重新建立一遍索引棋嘲,因?yàn)楫?dāng)你刪除某個(gè)數(shù)據(jù)的時(shí)候,索引的樹結(jié)構(gòu)就不完整了矩桂。所以互聯(lián)網(wǎng)公司的數(shù)據(jù)做的是假刪除.一是為了做數(shù)據(jù)分析,二是為了不破壞索引 )

  3.數(shù)據(jù)過多(分庫分表)

  4.服務(wù)器調(diào)優(yōu)及各個(gè)參數(shù)設(shè)置(調(diào)整my.cnf)

二沸移、分析原因時(shí),一定要找切入點(diǎn):

  1.先觀察侄榴,開啟慢查詢?nèi)罩颈⒙啵O(shè)置相應(yīng)的閾值(比如超過3秒就是慢SQL),在生產(chǎn)環(huán)境跑上個(gè)一天過后牲蜀,看看哪些SQL比較慢笆制。

  2.Explain和慢SQL分析。比如SQL語句寫的爛涣达,索引沒有或失效在辆,關(guān)聯(lián)查詢太多(有時(shí)候是設(shè)計(jì)缺陷或者不得以的需求)等等。

  3.Show Profile是比Explain更近一步的執(zhí)行細(xì)節(jié)度苔,可以查詢到執(zhí)行每一個(gè)SQL都干了什么事匆篓,這些事分別花了多少秒。

  4.找DBA或者運(yùn)維對MySQL進(jìn)行服務(wù)器的參數(shù)調(diào)優(yōu)寇窑。

三鸦概、什么是索引?

  MySQL官方對索引的定義為:索引(Index)是幫助MySQL高效獲取數(shù)據(jù)的數(shù)據(jù)結(jié)構(gòu)甩骏。我們可以簡單理解為:**快速查找排好序的一種數(shù)據(jù)結(jié)構(gòu)窗市。**Mysql索引主要有兩種結(jié)構(gòu):B+Tree索引和Hash索引。我們平常所說的索引饮笛,如果沒有特別指明咨察,一般都是指B樹結(jié)構(gòu)組織的索引(B+Tree索引)。索引如圖所示:

         [圖片上傳失敗...(image-f0cfc8-1522813598816)]

  最外層淺藍(lán)色磁盤塊1里有數(shù)據(jù)17福青、35(深藍(lán)色)和指針P1摄狱、P2、P3(黃色)无午。P1指針表示小于17的磁盤塊媒役,P2是在17-35之間,P3指向大于35的磁盤塊宪迟。真實(shí)數(shù)據(jù)存在于子葉節(jié)點(diǎn)也就是最底下的一層3酣衷、5、9踩验、10鸥诽、13......非葉子節(jié)點(diǎn)不存儲真實(shí)的數(shù)據(jù)商玫,只存儲指引搜索方向的數(shù)據(jù)項(xiàng),如17牡借、35拳昌。

  查找過程:例如搜索28數(shù)據(jù)項(xiàng),首先加載磁盤塊1到內(nèi)存中钠龙,發(fā)生一次I/O炬藤,用二分查找確定在P2指針。接著發(fā)現(xiàn)28在26和30之間碴里,通過P2指針的地址加載磁盤塊3到內(nèi)存沈矿,發(fā)生第二次I/O。用同樣的方式找到磁盤塊8咬腋,發(fā)生第三次I/O羹膳。

  真實(shí)的情況是,上面3層的B+Tree可以表示上百萬的數(shù)據(jù)根竿,上百萬的數(shù)據(jù)只發(fā)生了三次I/O而不是上百萬次I/O陵像,時(shí)間提升是巨大的。

四寇壳、Explain分析

  前文鋪墊完成醒颖,進(jìn)入實(shí)操部分,先來插入測試需要的數(shù)據(jù):
CREATE TABLE `user_info` (
  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(50) NOT NULL DEFAULT '',
  `age`  INT(11)              DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `name_index` (`name`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO user_info (name, age) VALUES ('xys', 20);
INSERT INTO user_info (name, age) VALUES ('a', 21);
INSERT INTO user_info (name, age) VALUES ('b', 23);
INSERT INTO user_info (name, age) VALUES ('c', 50);
INSERT INTO user_info (name, age) VALUES ('d', 15);
INSERT INTO user_info (name, age) VALUES ('e', 20);
INSERT INTO user_info (name, age) VALUES ('f', 21);
INSERT INTO user_info (name, age) VALUES ('g', 23);
INSERT INTO user_info (name, age) VALUES ('h', 50);
INSERT INTO user_info (name, age) VALUES ('i', 15);

CREATE TABLE `order_info` (
  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `user_id`      BIGINT(20)           DEFAULT NULL,
  `product_name` VARCHAR(50) NOT NULL DEFAULT '',
  `productor`    VARCHAR(30)          DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

初體驗(yàn)壳炎,執(zhí)行Explain的效果:

[圖片上傳失敗...(image-fa2713-1522813598816)]

索引使用情況在possible_keys泞歉、key和key_len三列,接下來我們先從左到右依次講解匿辩。

1.id

--id相同,執(zhí)行順序由上而下
explain select u.*,o.* from user_info u,order_info o where u.id=o.user_id;

[圖片上傳失敗...(image-7bec99-1522813598816)]

--id不同,值越大越先被執(zhí)行
explain select * from  user_info  where id=(select user_id from order_info where  product_name ='p8');

[圖片上傳失敗...(image-8ab502-1522813598816)]

2.select_type

可以看id的執(zhí)行實(shí)例腰耙,總共有以下幾種類型:

  • SIMPLE: 表示此查詢不包含 UNION 查詢或子查詢
  • PRIMARY: 表示此查詢是最外層的查詢
  • SUBQUERY: 子查詢中的第一個(gè) SELECT
  • UNION: 表示此查詢是 UNION 的第二或隨后的查詢
  • DEPENDENT UNION: UNION 中的第二個(gè)或后面的查詢語句, 取決于外面的查詢
  • UNION RESULT, UNION 的結(jié)果
  • DEPENDENT SUBQUERY: 子查詢中的第一個(gè) SELECT, 取決于外面的查詢. 即子查詢依賴于外層查詢的結(jié)果.
  • DERIVED:衍生,表示導(dǎo)出表的SELECT(FROM子句的子查詢)

3.table

table表示查詢涉及的表或衍生的表:

explain select tt.* from (select u.* from user_info u,order_info o where u.id=o.user_id and u.id=1) tt

[圖片上傳失敗...(image-fa2295-1522813598816)]

id為1的<derived2>的表示id為2的u和o表衍生出來的铲球。

4.type

type 字段比較重要沟优,它提供了判斷查詢是否高效的重要依據(jù)依據(jù)。 通過 type 字段睬辐,我們判斷此次查詢是 全表掃描 還是 索引掃描等。

[圖片上傳失敗...(image-69de15-1522813598816)]

type 常用的取值有:

  • system: 表中只有一條數(shù)據(jù). 這個(gè)類型是特殊的 const 類型宾肺。

  • const: 針對主鍵或唯一索引的等值查詢掃描, 最多只返回一行數(shù)據(jù). const 查詢速度非乘荻快, 因?yàn)樗鼉H僅讀取一次即可.例如下面的這個(gè)查詢, 它使用了主鍵索引, 因此 type 就是 const 類型的:explain select * from user_info where id = 2;

  • eq_ref: 此類型通常出現(xiàn)在多表的 join 查詢, 表示對于前表的每一個(gè)結(jié)果, 都只能匹配到后表的一行結(jié)果. 并且查詢的比較操作通常是 =, 查詢效率較高. 例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;

  • ref: 此類型通常出現(xiàn)在多表的 join 查詢, 針對于非唯一或非主鍵索引, 或者是使用了 最左前綴 規(guī)則索引的查詢. 例如下面這個(gè)例子中, 就使用到了 ref 類型的查詢:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5

  • range: 表示使用索引范圍查詢, 通過索引字段范圍獲取表中部分?jǐn)?shù)據(jù)記錄. 這個(gè)類型通常出現(xiàn)在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中.例如下面的例子就是一個(gè)范圍查詢:explain select * from user_info where id between 2 and 8锨用;

  • index: 表示全索引掃描(full index scan), 和 ALL 類型類似, 只不過 ALL 類型是全表掃描, 而 index 類型則僅僅掃描所有的索引, 而不掃描數(shù)據(jù).index 類型通常出現(xiàn)在: 所要查詢的數(shù)據(jù)直接在索引樹中就可以獲取到, 而不需要掃描數(shù)據(jù). 當(dāng)是這種情況時(shí), Extra 字段 會顯示 Using index.

  • ALL: 表示全表掃描, 這個(gè)類型的查詢是性能最差的查詢之一. 通常來說, 我們的查詢不應(yīng)該出現(xiàn) ALL 類型的查詢, 因?yàn)檫@樣的查詢在數(shù)據(jù)量大的情況下, 對數(shù)據(jù)庫的性能是巨大的災(zāi)難. 如一個(gè)查詢是 ALL 類型查詢, 那么一般來說可以對相應(yīng)的字段添加索引來避免.

    通常來說, 不同的 type 類型的性能關(guān)系如下:
    ALL < index < range ~ index_merge < ref < eq_ref < const < system
    ALL 類型因?yàn)槭侨頀呙? 因此在相同的查詢條件下, 它是速度最慢的.而 index 類型的查詢雖然不是全表掃描, 但是它掃描了所有的索引, 因此比 ALL 類型的稍快.后面的幾種類型都是利用了索引來查詢數(shù)據(jù), 因此可以過濾部分或大部分?jǐn)?shù)據(jù), 因此查詢效率就比較高了.

5.possible_keys

  它表示 mysql 在查詢時(shí), 可能使用到的索引. 注意, 即使有些索引在 possible_keys 中出現(xiàn), 但是并不表示此索引會真正地被 mysql 使用到. mysql 在查詢時(shí)具體使用了哪些索引, 由 key 字段決定.

6.key

  此字段是 mysql 在當(dāng)前查詢時(shí)所真正使用到的索引.比如請客吃飯,possible_keys是應(yīng)到多少人,key是實(shí)到多少人.當(dāng)我們沒有建立索引時(shí):
explain select o.* from order_info o where  o.product_name= 'p1' and  o.productor='whh';
create index idx_name_productor on order_info(productor);
drop index idx_name_productor on order_info;

[圖片上傳失敗...(image-967a2a-1522813598815)]

建立復(fù)合索引后再查詢:

[圖片上傳失敗...(image-ed76ef-1522813598815)]

7.key_len

  表示查詢優(yōu)化器使用了索引的字節(jié)數(shù). 這個(gè)字段可以評估組合索引是否完全被使用.

8.ref

  這個(gè)表示顯示索引的哪一列被使用了,如果可能的話,是一個(gè)常量丰刊。前文的type屬性里也有ref.注意區(qū)別

[圖片上傳失敗...(image-170300-1522813598815)]

9.rows

  rows 也是一個(gè)重要的字段. mysql 查詢優(yōu)化器根據(jù)統(tǒng)計(jì)信息, 估算 sql 要查找到結(jié)果集需要掃描讀取的數(shù)據(jù)行數(shù).這個(gè)值非常直觀顯示 sql 的效率好壞, 原則上 rows 越少越好.可以對比key中的例子,一個(gè)沒建立索引錢增拥,rows是9啄巧,建立索引后寻歧,rows是4.

10.extra

image.png

explain 中的很多額外的信息會在 extra 字段顯示, 常見的有以下幾種內(nèi)容:

  • using filesort :表示 mysql 需額外的排序操作, 不能通過索引順序達(dá)到排序效果. 一般有 using filesort都建議優(yōu)化去掉, 因?yàn)檫@樣的查詢 cpu 資源消耗大.
  • using index:覆蓋索引掃描, 表示查詢在索引樹中就可查找所需數(shù)據(jù), 不用掃描表數(shù)據(jù)文件, 往往說明性能不錯(cuò)
  • using temporary:查詢有使用臨時(shí)表, 一般出現(xiàn)于排序, 分組和多表 join 的情況, 查詢效率不高, 建議優(yōu)化.
  • using where :表名使用了where過濾

五、優(yōu)化案例

explain select u.*,o.* from user_info u LEFT JOIN  order_info o on u.id=o.user_id;

執(zhí)行結(jié)果秩仆,type有ALL码泛,并且沒有索引:

image.png

開始優(yōu)化,在關(guān)聯(lián)列創(chuàng)建索引澄耍,明顯看到type列的ALL變成ref噪珊,并且用到了索引,rows也從掃描9行變成了1行:

[圖片上傳失敗...(image-bdc64b-1522813598815)]

這里面一般有個(gè)規(guī)律是:左鏈接索引加在右表上面齐莲,右鏈接索引加在左表上面痢站。

六、是否需要創(chuàng)建索引选酗?

  索引雖然能非常高效的提高查詢速度阵难,同時(shí)卻會降低更新表的速度。實(shí)際上索引也是一張表芒填,該表保存了主鍵與索引字段呜叫,并指向?qū)嶓w表的記錄,所以索引列也是要占用空間的氢烘。

轉(zhuǎn)自:
https://juejin.im/entry/5ac2f69e518825557459e259

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末怀偷,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子播玖,更是在濱河造成了極大的恐慌椎工,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,839評論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件蜀踏,死亡現(xiàn)場離奇詭異维蒙,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)果覆,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,543評論 2 382
  • 文/潘曉璐 我一進(jìn)店門颅痊,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人局待,你說我怎么就攤上這事斑响。” “怎么了钳榨?”我有些...
    開封第一講書人閱讀 153,116評論 0 344
  • 文/不壞的土叔 我叫張陵舰罚,是天一觀的道長。 經(jīng)常有香客問我薛耻,道長营罢,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,371評論 1 279
  • 正文 為了忘掉前任饼齿,我火速辦了婚禮饲漾,結(jié)果婚禮上蝙搔,老公的妹妹穿的比我還像新娘。我一直安慰自己考传,他們只是感情好吃型,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,384評論 5 374
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著伙菊,像睡著了一般败玉。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上镜硕,一...
    開封第一講書人閱讀 49,111評論 1 285
  • 那天运翼,我揣著相機(jī)與錄音,去河邊找鬼兴枯。 笑死血淌,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的财剖。 我是一名探鬼主播悠夯,決...
    沈念sama閱讀 38,416評論 3 400
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼躺坟!你這毒婦竟也來了沦补?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,053評論 0 259
  • 序言:老撾萬榮一對情侶失蹤咪橙,失蹤者是張志新(化名)和其女友劉穎夕膀,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體美侦,經(jīng)...
    沈念sama閱讀 43,558評論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡产舞,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,007評論 2 325
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了菠剩。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片易猫。...
    茶點(diǎn)故事閱讀 38,117評論 1 334
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖具壮,靈堂內(nèi)的尸體忽然破棺而出准颓,到底是詐尸還是另有隱情,我是刑警寧澤棺妓,帶...
    沈念sama閱讀 33,756評論 4 324
  • 正文 年R本政府宣布瞬场,位于F島的核電站,受9級特大地震影響涧郊,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜眼五,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,324評論 3 307
  • 文/蒙蒙 一妆艘、第九天 我趴在偏房一處隱蔽的房頂上張望彤灶。 院中可真熱鬧,春花似錦批旺、人聲如沸幌陕。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,315評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽搏熄。三九已至,卻和暖如春暇赤,著一層夾襖步出監(jiān)牢的瞬間心例,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,539評論 1 262
  • 我被黑心中介騙來泰國打工鞋囊, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留止后,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,578評論 2 355
  • 正文 我出身青樓溜腐,卻偏偏與公主長得像译株,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個(gè)殘疾皇子挺益,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,877評論 2 345

推薦閱讀更多精彩內(nèi)容