FreeNos Memory類的繼承關(guān)系表(x86Memory繼承自Memory)
1.成員變量
Memory類的成員變量memoryAvail和memoryMapEnd的訪問權(quán)限是protected的虐杯,成員變量memoryAvail和memoryMapEnd是全局變量擎椰;
分別表示的是:
memorySize 所有的可用的物理內(nèi)存;
memoryAvail 可用的物理內(nèi)存确憨;
memoryMap 映射所有可用的物理內(nèi)存瓤的;
2.構(gòu)造方法和析構(gòu)方法
Memory::Memory()
{
/* 標記Kernel使用的內(nèi)存地址 */
allocatePhysical(0x00400000, 0);
/* 標記boot模塊使用的內(nèi)存地址 */
for (Size i = 0; i < multibootInfo.modsCount; i++)
{
MultibootModule *mod = &((MultibootModule *) multibootInfo.modsAddress)[i];
Size modSize = mod->modEnd - mod->modStart;
/* 標記使用的物理內(nèi)存地址*/
allocatePhysical(modSize, mod->modStart);
}
}
Memory還提供了一個初始化memoryMap和kernel heap的方法:initialize()
void Memory::initialize()
{
Address page = 0x00300000;
Size meta = sizeof(BubbleAllocator) + sizeof(PoolAllocator);
Allocator *bubble, *pool;
/* 保存內(nèi)存大小到MemoryAvail變量中*/
memorySize = (multibootInfo.memLower + multibootInfo.memUpper) * 1024;
memoryAvail = memorySize;
/* 分配memoryMap */
memoryMap = (u8 *)(&kernelEnd);
memoryMapEnd = memoryMap + (memorySize / PAGESIZE / 8);
/* 清空memoryMap*/
for (u8 *p = memoryMap; p < memoryMapEnd; p++)
{
*p = 0;
}
/* 設(shè)置動態(tài)內(nèi)存堆*/
bubble = new (page) BubbleAllocator();
pool = new (page + sizeof(BubbleAllocator)) PoolAllocator();
pool->setParent(bubble);
/* 設(shè)置堆的大小*/
bubble->region(page + meta, (1024 * 1024) - meta);
/* 設(shè)置默認分配器*/
Allocator::setDefault(pool);
}
析構(gòu)函數(shù): ~Memory 是虛函數(shù),可在其他地方實現(xiàn)篙骡;
3.其他對象方法
Size getTotalMemory()
{
/*對memorySize的引用*/
return memorySize;
}
Size getAvailableMemory()
{
/*對memoryAvail的引用*/
return memoryAvail;
}
從源代碼可知Memory類主要是對物理內(nèi)存的分配和內(nèi)存映射的操作:
/*分配物理和標記使用的內(nèi)存到memoryMap中*/
Address allocatePhysical(Size sz, Address addr = 4194304);
/*取消參數(shù)在memoryMap中的標記*/
void releasePhysical(Address paddr);
Address allocateVirtual(Address vaddr, ulong prot);
Address allocateVirtual(ArchProcess *p, Address vaddr, ulong prot);
/*將物理內(nèi)存映射到進程的虛擬地址空間中*/
virtual Address mapVirtual(Address paddr, Address vaddr, ulong prot) = 0;
/*將物理內(nèi)存映射到進程的虛擬地址空間中*/
virtual Address mapVirtual(ArchProcess *p, Address paddr, Address vaddr, ulong prot) = 0;
/*把參數(shù)進程中的所有的物理頁標記為釋放*/
virtual void releaseAll(ArchProcess *p) = 0;
在以上方法實現(xiàn)之前,先看一下對內(nèi)存映射的操作:
bool Memory::isMarked(Address addr)
{
Size index = (addr >> PAGESHIFT) / 8;
Size bit = (addr >> PAGESHIFT) % 8;
return memoryMap[index] & (1 << bit);
}
void Memory::setMark(Address addr, bool marked)
{
Size index = (addr >> PAGESHIFT) / 8;
Size bit = (addr >> PAGESHIFT) % 8;
if (marked)
memoryMap[index] |= (1 << bit);
else
memoryMap[index] &= ~(1 << bit);
}
接下來的是上面方法的詳細實現(xiàn):
Address Memory::allocatePhysical(Size sz, Address paddr)
{
Address start = paddr & PAGEMASK, end = memorySize;
Address from = 0, count = 0;
/* Loop the memoryMap for a free block. */
for (Address i = start; i < end; i += PAGESIZE)
{
if (!isMarked(i))
{
/* Remember this page. */
if (!count)
{
from = i;
count = 1;
}
else
count++;
/* Are there enough contigious pages? */
if (count * PAGESIZE >= sz)
{
for (Address j = from; j < from + (count * PAGESIZE); j += PAGESIZE)
{
setMark(j, true);
}
memoryAvail -= count * PAGESIZE;
return from;
}
}
else
{
from = count = 0;
}
}
/* Out of memory! */
return (Address) ZERO;
}
void Memory::releasePhysical(Address addr)
{
setMark(addr & PAGEMASK, false);
memoryAvail += PAGESIZE;
}
Address Memory::allocateVirtual(Address vaddr, ulong prot)
{
Address newPage = allocatePhysical(PAGESIZE);
return mapVirtual(newPage, vaddr, prot);
}
Address Memory::allocateVirtual(ArchProcess *p, Address vaddr, ulong prot)
{
Address newPage = allocatePhysical(PAGESIZE);
return mapVirtual(p, newPage, vaddr, prot);
}
virtual Address mapVirtual(Address paddr, Address vaddr, ulong prot) = 0
virtual Address mapVirtual(ArchProcess *p, Address paddr, Address vaddr, ulong prot) = 0
這兩個方法可以在/x86/x86Memory類中找到實現(xiàn)。
Address X86Memory::mapVirtual(Address paddr, Address vaddr, ulong prot)
{
/* Virtual address specified? */
if (vaddr == ZERO)
{
vaddr = findFree(PAGETABFROM, PAGEDIRADDR);
}
/* Point to the correct page table. */
myPageTab = PAGETABADDR(vaddr);
/* Do we have the page table in memory? */
if (!(myPageDir[DIRENTRY(vaddr)] & PAGE_PRESENT))
{
/* Then first allocate new page table. */
Address newPageTab = memory->allocatePhysical(PAGESIZE);
newPageTab |= PAGE_PRESENT | PAGE_RW | prot;
/* Map the new page table into memory. */
myPageDir[DIRENTRY(vaddr)] = newPageTab;
tlb_flush(myPageTab);
/* Zero the new page table. */
memset(myPageTab, 0, PAGESIZE);
}
/* Map physical to virtual address. */
myPageTab[TABENTRY(vaddr)] = (paddr & PAGEMASK) | prot;
tlb_flush(vaddr);
/* Success. */
return vaddr;
}
Address X86Memory::mapVirtual(X86Process *p, Address paddr,
Address vaddr, ulong prot)
{
/* Map remote pages. */
mapRemote(p, vaddr);
/* Virtual address specified? */
if (vaddr == ZERO)
{
vaddr = findFree(PAGETABFROM_REMOTE, remPageDir);
}
/* Repoint to the correct (remote) page table. */
remPageTab = PAGETABADDR_FROM(vaddr, PAGETABFROM_REMOTE);
/* Does the remote process have the page table in memory? */
if (!(remPageDir[DIRENTRY(vaddr)] & PAGE_PRESENT))
{
/* Nope, allocate a page table first. */
Address newPageTab = memory->allocatePhysical(PAGESIZE);
newPageTab |= PAGE_PRESENT | PAGE_RW | prot;
/* Map the new page table into remote memory. */
remPageDir[DIRENTRY(vaddr)] = newPageTab;
/* Update caches. */
tlb_flush(remPageTab);
/* Zero the new page. */
memset(remPageTab, 0, PAGESIZE);
}
/* Map physical address to remote virtual address. */
remPageTab[TABENTRY(vaddr)] = (paddr & PAGEMASK) | prot;
tlb_flush(vaddr);
/* Success. */
return (Address) vaddr;
}
Address X86Memory::lookupVirtual(X86Process *p, Address vaddr)
{
Address ret = ZERO;
/* Map remote page tables. */
mapRemote(p, vaddr);
/* Lookup the address, if mapped. */
if (remPageDir[DIRENTRY(vaddr)] & PAGE_PRESENT &&
remPageTab[TABENTRY(vaddr)] & PAGE_PRESENT)
{
ret = remPageTab[TABENTRY(vaddr)];
}
return ret;
}
void X86Memory::releaseAll(X86Process *p)
{
/* Map page tables. */
mapRemote(p, 0x0);
/* Mark all our physical pages free. */
for (Size i = 0; i < 1024; i++)
{
/* May we release these physical pages? */
if ((remPageDir[i] & PAGE_PRESENT) && !(remPageDir[i] & PAGE_PINNED))
{
/* Repoint page table. */
remPageTab = PAGETABADDR_FROM(i * PAGESIZE * 1024,
PAGETABFROM_REMOTE);
/* Scan page table. */
for (Size j = 0; j < 1024; j++)
{
if (remPageTab[j] & PAGE_PRESENT && !(remPageTab[j] & PAGE_PINNED))
{
memory->releasePhysical(remPageTab[j]);
}
}
}
}
}