函數(shù)式接口是伴隨著Stream的誕生而出現(xiàn)的,Java8Stream 作為函數(shù)式編程的一種具體實現(xiàn)棺禾,開發(fā)者無需關(guān)注怎么做读处,只需知道要做什么,各種操作符配合簡潔明了的函數(shù)式接口給開發(fā)者帶來了簡單快速處理數(shù)據(jù)的體驗猜惋。
函數(shù)式接口
什么是函數(shù)式接口丸氛?簡單來說就是只有一個抽象函數(shù)的接口。為了使得函數(shù)式接口的定義更加規(guī)范著摔,java8 提供了@FunctionalInterface 注解告訴編譯器在編譯器去檢查函數(shù)式接口的合法性缓窜,以便在編譯器在編譯出錯時給出提示。為了更加規(guī)范定義函數(shù)接口谍咆,給出如下函數(shù)式接口定義規(guī)則:
- 有且僅有一個抽象函數(shù)
- 必須要有@FunctionalInterface 注解
- 可以有默認方法
可以看出函數(shù)式接口的編寫定義非常簡單禾锤,不知道大家有沒有注意到,其實我們經(jīng)常會用到函數(shù)式接口摹察,如Runnable 接口恩掷,它就是一個函數(shù)式接口:
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
過去我們會使用匿名內(nèi)部類來實現(xiàn)線程的執(zhí)行體:
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("Hello FunctionalInterface");
}
}).start();
現(xiàn)在我們使用Lambda 表達式,這里函數(shù)式接口的使用沒有體現(xiàn)函數(shù)式編程思想供嚎,這里輸出字符到標準輸出流中螃成,產(chǎn)生了副作用,起到了簡化代碼的作用查坪,當然還有裝B。
new Thread(()->{
System.out.println("Hello FunctionalInterface");
}).start();
Java8 util.function 包下自帶了43個函數(shù)式接口宁炫,大體分為以下幾類:
- Consumer 消費接口
- Function 功能接口
- Operator 操作接口
- Predicate 斷言接口
- Supplier 生產(chǎn)接口
其他接口都是在此基礎(chǔ)上變形定制化罷了偿曙。
函數(shù)式接口詳細介紹
這里只介紹最基礎(chǔ)的函數(shù)式接口,至于它的變體只要明白了基礎(chǔ)自然就能夠明白
Consumer
消費者接口羔巢,就是用來消費數(shù)據(jù)的望忆。
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
Consumer 接口中有accept 抽象方法罩阵,accept接受一個變量,也就是說你在使用這個函數(shù)式接口的時候启摄,給你提供了數(shù)據(jù)稿壁,你只要接收使用就可以了;andThen 是一個默認方法歉备,接受一個Consumer 類型傅是,當你對一個數(shù)據(jù)使用一次還不夠爽的時候,你還能再使用一次蕾羊,當然你其實可以爽無數(shù)次喧笔,只要一直使用andThan方法。
Function
何為Function呢龟再?比如電視機书闸,給你帶來精神上的愉悅,但是它需要用電啊利凑,電視它把電轉(zhuǎn)換成了你荷爾蒙浆劲,這就是Function,簡單電說哀澈,F(xiàn)unction 提供一種轉(zhuǎn)換功能牌借。
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}
Function 接口 最主要的就是apply 函數(shù),apply 接受T類型數(shù)據(jù)并返回R類型數(shù)據(jù)日丹,就是將T類型的數(shù)據(jù)轉(zhuǎn)換成R類型的數(shù)據(jù)走哺,它還提供了compose、andThen哲虾、identity 三個默認方法丙躏,compose 接受一個Function,andThen也同樣接受一個Function束凑,這里的andThen 與Consumer 的andThen 類似晒旅,在apply之后在apply一遍,compose 則與之相反汪诉,在apply之前先apply(這兩個apply具體處理內(nèi)容一般是不同的)废恋,identity 起到了類似海關(guān)的作用,外國人想要運貨進來扒寄,總得交點稅吧鱼鼓,然后貨物才能安全進入中國市場,當然了想不想收稅還是你說了算的:该编。
Operator
可以簡單理解成算術(shù)中的各種運算操作迄本,當然不僅僅是運算這么簡單,因為它只定義了運算這個定義课竣,但至于運算成什么樣你說了算嘉赎。由于沒有最基礎(chǔ)的Operator置媳,這里將通過 BinaryOperator、IntBinaryOperator來理解Operator 函數(shù)式接口公条,先從簡單的IntBinaryOperator開始拇囊。
IntBinaryOperator
從名字可以知道,這是一個二元操作靶橱,并且是Int 類型的二元操作寥袭,那么這個接口可以做什么呢,除了加減乘除抓韩,還可以可以實現(xiàn)平方(兩個相同int 數(shù)操作起來不就是平方嗎)纠永,還是先看看它的定義吧:
@FunctionalInterface
public interface IntBinaryOperator {
/**
* Applies this operator to the given operands.
*
* @param left the first operand
* @param right the second operand
* @return the operator result
*/
int applyAsInt(int left, int right);
}
IntBinaryOperator 接口內(nèi)只有一個applyAsInt 方法,其接收兩個int 類型的參數(shù)谒拴,并返回一個int 類型的結(jié)果尝江,其實這個跟Function 接口的apply 有點像,但是這里限定了英上,只能是int類型炭序。
BinaryOperator
BinaryOperator 二元操作,看起來它和IntBinaryOperator 是父子關(guān)系苍日,實際上這兩者沒有半點關(guān)系惭聂,但他們在功能上還是有相似之處的:
@FunctionalInterface
public interface BinaryOperator<T> extends BiFunction<T,T,T> {
/**
* Returns a {@link BinaryOperator} which returns the lesser of two elements
* according to the specified {@code Comparator}.
*
* @param <T> the type of the input arguments of the comparator
* @param comparator a {@code Comparator} for comparing the two values
* @return a {@code BinaryOperator} which returns the lesser of its operands,
* according to the supplied {@code Comparator}
* @throws NullPointerException if the argument is null
*/
public static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator) {
Objects.requireNonNull(comparator);
return (a, b) -> comparator.compare(a, b) <= 0 ? a : b;
}
/**
* Returns a {@link BinaryOperator} which returns the greater of two elements
* according to the specified {@code Comparator}.
*
* @param <T> the type of the input arguments of the comparator
* @param comparator a {@code Comparator} for comparing the two values
* @return a {@code BinaryOperator} which returns the greater of its operands,
* according to the supplied {@code Comparator}
* @throws NullPointerException if the argument is null
*/
public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) {
Objects.requireNonNull(comparator);
return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;
}
}
BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是從石頭里蹦出來的相恃,BinaryOperator 自身定義了minBy辜纲、maxBy默認方法,并且參數(shù)都是Comparator拦耐,就是根據(jù)傳入的比較器的比較規(guī)則找出最小最大的數(shù)據(jù)耕腾。
Predicate
斷言、判斷杀糯,對輸入的數(shù)據(jù)根據(jù)某種標準進行評判扫俺,最終返回boolean值:
@FunctionalInterface
public interface Predicate<T> {
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);
/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
/**
* Returns a predicate that represents the logical negation of this
* predicate.
*
* @return a predicate that represents the logical negation of this
* predicate
*/
default Predicate<T> negate() {
return (t) -> !test(t);
}
/**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
/**
* Returns a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}.
*
* @param <T> the type of arguments to the predicate
* @param targetRef the object reference with which to compare for equality,
* which may be {@code null}
* @return a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}
*/
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
}
Predicate的test 接收T類型的數(shù)據(jù),返回 boolean 類型固翰,即對數(shù)據(jù)進行某種規(guī)則的評判狼纬,如果符合則返回true,否則返回false骂际;Predicate接口還提供了 and疗琉、negate、or歉铝,與 取反 或等没炒,isEqual 判斷兩個參數(shù)是否相等等默認函數(shù)。
Supplier
生產(chǎn)、提供數(shù)據(jù):
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
非常easy送火,get方法返回一個T類數(shù)據(jù),可以提供重復(fù)的數(shù)據(jù)先匪,或者隨機種子都可以种吸,就這么簡單。
函數(shù)式接口實戰(zhàn)
Consumer
Consumer 用的太多了呀非,不想說太多坚俗,如下:
public class Main {
public static void main(String[] args) {
Stream.of(1,2,3,4,5,6)
.forEach(integer -> System.out.println(integer)); //輸出1,2岸裙,3猖败,4,5降允,6
}
}
這里使用標準輸出恩闻,還是產(chǎn)生了副作用,但是這種程度是可以允許的
Function
- 轉(zhuǎn)換剧董,將字符串轉(zhuǎn)成長度
public class Main {
public static void main(String[] args) {
Stream.of("hello","FunctionalInterface")
.map(e->e.length())
.forEach(System.out::println);
}
}
- 運算
public class FunctionTest {
public static void main(String[] args) {
public static void main(String[] args) {
Function<Integer, Integer> square = integer -> integer * integer; //定義平方運算
List<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.add(4);
list.stream()
.map(square.andThen(square)) //四次方
.forEach(System.out::println);
System.out.println("------");
list.stream()
.map(square.compose(e -> e - 1)) //減一再平方
.forEach(System.out::println);
System.out.println("------");
list.stream().map(square.andThen(square.compose(e->e/2))) //先平方然后除2再平方
.forEach(System.out::println);
}
}
結(jié)果如圖:
Operator
- BinaryOperator
這里實現(xiàn)找最大值:
public class BinaryOperatorTest {
public static void main(String[] args) {
Stream.of(2,4,5,6,7,1)
.reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println);
}
}
Comparator 后期會講到
- IntOperator
這里實現(xiàn)累加功能:
public class BinaryOperatorTest {
public static void main(String[] args) {
IntBinaryOperator intBinaryOperator = (e1, e2)->e1+e2; //定義求和二元操作
IntStream.of(2,4,5,6,7,1)
.reduce(intBinaryOperator).ifPresent(System.out::println);
}
}
Predicate
篩選出大于0最小的兩個數(shù)
public class Main {
public static void main(String[] args) {
IntStream.of(200,45,89,10,-200,78,94)
.filter(e->e>0) //過濾小于0的數(shù)
.sorted() //自然順序排序
.limit(2) //取前兩個
.forEach(System.out::println);
}
}
Supplier
這里一直生產(chǎn)2這個數(shù)字幢尚,為了能停下來,使用limit
public class Main {
public static void main(String[] args) {
Stream.generate(()->2)
.limit(10)
.forEach(System.out::println);
}
}
如圖:
總結(jié)
Java8的Stream 基本上都是使用util.function包下的函數(shù)式接口來實現(xiàn)函數(shù)式編程的翅楼,而函數(shù)式接口也就只分為 Function尉剩、Operator、Consumer毅臊、Predicate理茎、Supplier 這五大類,只要能理解掌握最基礎(chǔ)的五大類用法管嬉,其他變種也能觸類旁通皂林。