方法比較

對(duì)比總結(jié)

1专肪、09年的通過保邊濾波解決 halo artifacts (halo artifacts are present at sharp edges where the luminance of the NIR and visible image are significantly different.)但是在亮度差異較大的區(qū)域您炉,色彩失真比較大妒御。(As we are only working with the luminance channel, colors might appear unrealistic in cases of extreme luminance changes 溉苛。
2鲤孵、Feng et al.'s method fuses the RGB and NIR images based on transmission;
通過nir和RGB的不同求得transmission。但是這種方法的Feng etal.'s method creates ghost artefacts around cloud舍沙。
3.Dong 避免了 ghost artefacts around cloud朵栖,但是颊亮,由于仍采用了dark priority的方法,使得圖像的顏色加重陨溅,不自然终惑,看不清細(xì)節(jié)。視覺上提升效果不大声登。
4.Chang-Hwan Son的先給nir做color mapping狠鸳,但是如果nir和RGB有slightly misaligned,或者 the luminance of the NIR and visible image are significantly different悯嗓,就會(huì)有halo artifacts和color distortion件舵。


image.png

chang-hwan的


image.png

我的
即使在加入了顏色和深度的正則化先驗(yàn)知識(shí),進(jìn)行約束脯厨,逼近先驗(yàn)铅祸。
但會(huì)出現(xiàn)邊緣處的halo artifacts,并且顏色由于采用了dark priority的先驗(yàn)合武,仍然會(huì)不自然临梗。
除了chang-hwan去霧效果好一些,細(xì)節(jié)多一些稼跳,其他的方法盟庞,融合后,圖像的細(xì)節(jié)提升都不是特別顯著汤善,并且什猖,近提升了遠(yuǎn)處的,在圖像中红淡,近處也會(huì)有一定的不清楚不狮。我的能夠?qū)幰灿幸欢ǖ奶嵘饔茫⑶夷軌虮3诸伾淖匀辉诤担曈X上能夠達(dá)到一個(gè)比較好的效果摇零。
image.png

image.png

image.png

image.png
  1. 《COLOR IMAGE DEHAZING USING THE NEAR-INFRARED》Lex Schaul
    突破點(diǎn):the halo artifacts that disappear by using edge-preserving filters.However, halo artifacts are present at sharp edges where the luminance of the NIR and visible image are significantly different. By making use of the WLS filters, these artifacts disappear.
    不足:As we are only working with the luminance channel, colors might appear unrealistic in cases of extreme luminance changes (Fig.3). We want to investigate in the future how our images can be improved by additional color processing.


    image.png
  2. 《NEAR-INFRARED GUIDED COLOR IMAGE DEHAZING》Chen Feng
    Image dehazing in general involves two tasks, removing the airlight color effect and recovering the lost details.Removing the airlight color is fundamental to image dehazing. Inaccurate estimation of the airlight color could result in unwanted color shift
    in two-fold:
    Design an optimization framework to resolve the image de-hazing problem guided with NIR gradient constraints.
    Refine airlight color estimation by exploiting the differences between NIR and RGB channels.
    估計(jì)的大氣光 都是一個(gè)固定值,但是大氣是分布的桶蝎,局部和全局是有差異的驻仅,并且對(duì)于t,在每個(gè)通道的t也是不同的。
  3. 《Colour image dehazing using near-infrared fusion》Dong-Won Jang, Rae-Hong Park
    Schaul et al.'s method distorts the colour of the input image by fusing the NIR image. Although Feng et al.'s method removes the haze efficiently, some significant artefacts usually appear at cloud boundaries that are not aligned with those of the NIR image with small transmission values.
    Regions or images without haze remain unaltered. Therefore, our method can be applied whether haze is actually present or not.
    Both methods efficiently remove haze in the mountainous area beyond the stretch of water. However, the input images are slightly misaligned, and Feng et al.'s method fuses the RGB and NIR images based on transmission; as expected, Feng etal.'s method creates ghost artefacts around cloud, as shown in Fig. 6c. In contrast, the proposed method fuses images based on the HF distribution of the local patch and so, as shown in Fig. 6d, no ghost artefact is observed in misaligned regions.


    image.png

    4.There are serious discrepancies in terms of brightness and image structures between the near-infrared image and the visible color image. Due to this discrepancy, the direct use of the near-infrared image for haze removal causes a color distortion problem during near-infrared fusion. The key objective for the near-infrared fusion is therefore to remove the color distortion as well as the haze.
    In short, the new issue for the near-infrared fusion is to preserve high visibility of the captured near-infrared image and to remove color distortion that appears during image fusion
    加入了顏色和深度的正則化先驗(yàn)知識(shí)登渣,進(jìn)行約束雾家。逼近先驗(yàn)。

考慮到的現(xiàn)象還有實(shí)驗(yàn)的一些發(fā)現(xiàn)

NIR的不同物質(zhì)區(qū)域的反射特性不同绍豁。

物質(zhì)對(duì)近紅外和RGB四通道的反射率差異比較大,通過NVDI指數(shù)牙捉,植被等區(qū)域近紅外強(qiáng)于RGB竹揍,天空霧氣水等近紅外弱于RGB敬飒。就是圖像的對(duì)比度差異比較大。RGB三個(gè)通道和

近紅外圖像不能理解為一個(gè)單純的亮度圖像芬位。

然而由于物體成像根據(jù)Retinx理論分為入射光和反射光无拗,所以,當(dāng)想要求RGB和NIR的反射的差異時(shí)昧碉,先使用了同態(tài)濾波去除了入射光的影響英染。

這個(gè)差異圖,代表了自然場景下被饿,物質(zhì)對(duì)NIR和RGB的反射率的不同四康,是考慮到了物質(zhì)的反射的物理特性。------------------

引導(dǎo)濾波和雙邊濾波的效果類似狭握,但是闪金,速度快。

因?yàn)?NIR和RGB的對(duì)比度是不同的论颅,所以在將detail層融合的時(shí)候哎垦,盡量不引進(jìn)近紅外的對(duì)比度信息,而是主要引進(jìn)的是紋理信息恃疯。而通過商圖像(光照不變的 illumination invariant)漏设,可以最大限度的隱藏對(duì)比度信息,保留紋理信息今妄。

The ratio is computed on each RGB channel separately and is independent of the signal magnitude and surface reflectance. The ratio captures the local detail variation in and is commonly called a quotient image [Shashua and Riklin-Raviv 2001] or ratio image [Liu et al. 2001] in computer vision

We use the detail information from the NIR image to both reduce noise in the RGB image and sharpen its detail. The base layer of RGB image contains low luminance information as perceived by humans visual system, thus the NIR base layer is discarded. 如此郑口,可以保持融合以后顏色的自然。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末蛙奖,一起剝皮案震驚了整個(gè)濱河市潘酗,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌雁仲,老刑警劉巖仔夺,帶你破解...
    沈念sama閱讀 219,539評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異攒砖,居然都是意外死亡缸兔,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,594評(píng)論 3 396
  • 文/潘曉璐 我一進(jìn)店門吹艇,熙熙樓的掌柜王于貴愁眉苦臉地迎上來惰蜜,“玉大人,你說我怎么就攤上這事受神∨撞” “怎么了?”我有些...
    開封第一講書人閱讀 165,871評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長财著。 經(jīng)常有香客問我联四,道長,這世上最難降的妖魔是什么撑教? 我笑而不...
    開封第一講書人閱讀 58,963評(píng)論 1 295
  • 正文 為了忘掉前任朝墩,我火速辦了婚禮,結(jié)果婚禮上伟姐,老公的妹妹穿的比我還像新娘收苏。我一直安慰自己,他們只是感情好愤兵,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,984評(píng)論 6 393
  • 文/花漫 我一把揭開白布鹿霸。 她就那樣靜靜地躺著,像睡著了一般恐似。 火紅的嫁衣襯著肌膚如雪杜跷。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,763評(píng)論 1 307
  • 那天矫夷,我揣著相機(jī)與錄音葛闷,去河邊找鬼。 笑死双藕,一個(gè)胖子當(dāng)著我的面吹牛淑趾,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播忧陪,決...
    沈念sama閱讀 40,468評(píng)論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼扣泊,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了嘶摊?” 一聲冷哼從身側(cè)響起延蟹,我...
    開封第一講書人閱讀 39,357評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎叶堆,沒想到半個(gè)月后阱飘,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,850評(píng)論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡虱颗,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,002評(píng)論 3 338
  • 正文 我和宋清朗相戀三年沥匈,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片忘渔。...
    茶點(diǎn)故事閱讀 40,144評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡高帖,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出畦粮,到底是詐尸還是另有隱情散址,我是刑警寧澤乖阵,帶...
    沈念sama閱讀 35,823評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站爪飘,受9級(jí)特大地震影響义起,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜师崎,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,483評(píng)論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望椅棺。 院中可真熱鬧犁罩,春花似錦、人聲如沸两疚。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,026評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽诱渤。三九已至丐巫,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間勺美,已是汗流浹背递胧。 一陣腳步聲響...
    開封第一講書人閱讀 33,150評(píng)論 1 272
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留赡茸,地道東北人缎脾。 一個(gè)月前我還...
    沈念sama閱讀 48,415評(píng)論 3 373
  • 正文 我出身青樓,卻偏偏與公主長得像占卧,于是被迫代替她去往敵國和親遗菠。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,092評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容

  • 越來越多的女人不愿意結(jié)婚华蜒,結(jié)婚了不愿意放棄工作辙纬,生了一胎不肯再生二胎。就是我們現(xiàn)在這個(gè)社會(huì)還不夠尊重女性叭喜,特別是婚...
    cb788cf4f7c2閱讀 302評(píng)論 0 0
  • 不同的讀者(觀眾)會(huì)用不同的視角解讀《瑯琊榜》域滥。 堅(jiān)不可摧的袍澤之情纵柿,步步為營的攻心大計(jì),蕩氣回腸的戰(zhàn)爭場面启绰,都令...
    歡喜的海塔閱讀 1,777評(píng)論 14 38
  • 今天周末昂儒,鬧鐘雖然設(shè)錯(cuò)了,但是心存牽掛的我6點(diǎn)半醒來了委可,和老師的聲音一起再次與自己相遇渊跋。 我看了坐在我旁邊的小...
    Sherry奕閱讀 127評(píng)論 0 0
  • 感恩冥想: 1.感恩婆媽早上幫我們準(zhǔn)備可口的早餐腊嗡,幫我給孩子穿衣服,讓我們有更多時(shí)間仔細(xì)吃飯拾酝。 2·中午感覺右肩膀...
    秀芝_11c0閱讀 92評(píng)論 0 0