看了好多帖子想许,都沒(méi)有詳細(xì)簡(jiǎn)明的推導(dǎo)過(guò)程,所以在這里寫(xiě)一下(前提了解導(dǎo)數(shù)的極限定義和圖像的結(jié)構(gòu)):
拉普拉斯算子定義:
\bigtriangledown^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}f(x,y)對(duì)x右側(cè)的一階偏導(dǎo)(因?yàn)橄噜忺c(diǎn)像素距離差為1茄厘,所以分母為1略去):
\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)f(x,y)對(duì)x左側(cè)的一階偏導(dǎo)(同上):
\frac{\partial f}{\partial x} = f(x,y) - f(x-1,y)f(x,y)對(duì)x的二階偏導(dǎo)(右側(cè)一階減左側(cè)一階,分母仍然是1略去):
\begin{aligned} \frac{\partial^2 f}{\partial x^2} &= f(x+1,y) - f(x,y) - (f(x,y) - f(x-1,y)) \\ &= f(x+1,y) + f(x-1,y) - 2f(x,y) \end{aligned}f(x,y)對(duì)y的二階偏導(dǎo)(同上):
\begin{aligned} \frac{\partial^2 f}{\partial y^2} &= f(x,y+1) - f(x,y) - (f(x,y) - f(x,y-1)) \\ &= f(x,y+1) + f(x,y-1) - 2f(x,y) \end{aligned}上面兩式相加得到結(jié)果:
\begin{aligned} \bigtriangledown^2 f &= f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y) \\ &= (f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)) - 4f(x,y) \end{aligned}
然后按照結(jié)果中每個(gè)點(diǎn)的權(quán)值變成卷積核:
0 | 1 (f(x,y-1)的權(quán)值) | 0 |
1 (f(x-1,y)的權(quán)值) | -4 (f(x,y)的權(quán)值) | 1 (f(x+1,y)的權(quán)值) |
0 | 1 (f(x,y+1)的權(quán)值) | 0 |