https://zhuanlan.zhihu.com/p/93059665
Sequential and Session-based
Dynamic Item Block and Prediction Enhancing Block for Sequential Recommendation
Item對不同的用戶和時間有不同的表示媚朦,設(shè)計了動態(tài)Item模塊學習Item的動態(tài)表示。并且學習了用戶的多維度表示日戈。
- item動態(tài)表征
Feature-level Deeper Self-Attention Network for Sequential Recommendation
使用self-attention在item-level和feature-level建模,分別學習item和feature的轉(zhuǎn)移模式浙炼。將學習到的表示concat接入全鏈接進行next item預測。
- self-attention
Graph Contextualized Self-Attention Network for Session-based Recommendation
結(jié)合Self-Attention和GNN弯屈,彌補Self-Attetion對局部依賴關(guān)系捕捉不足的缺點蜗帜。
- GNN
Sequential and Diverse Recommendation with Long Tail
序列推薦增加aggregate diversity资厉。
- diversity
ISLF: Interest Shift and Latent Factors Combination Model for Session-based Recommendation
在RNN基礎(chǔ)上加VAE結(jié)構(gòu)和attention機制。取得state-of-the-art宴偿。
- VAE
Sequential Recommender Systems: Challenges, Progress and Prospects
survey
- survey
A Review-Driven Neural Model for Sequential Recommendation
Chenliang
評論驅(qū)動的序列推薦湘捎,考慮長短期興趣窄刘。
- 評論
領(lǐng)域(視頻/新聞)
DeepAPF: Deep Attentive Probabilistic Factorization for Multi-site Video Recommendation
利用用戶在多個站點的視頻瀏覽行為窥妇,進行視頻推薦
- 跨平臺
Disparity-preserved Deep Cross-platform Association for Cross-platform Video Recommendation
跨平臺視頻推薦
- 跨平臺
Multi-View Active Learning for Video Recommendation
使用文本進行推薦娩践,但文本確實需要標注活翩,主動學習降低標注成本翻伺。最終在分類和推薦任務上取得效果材泄。
- 主動學習
Neural News Recommendation with Attentive Multi-View Learning
user和news兩個encoder穆趴,考慮muti-view信息
- encoder
強化學習
Reinforced Negative Sampling for Recommendation with Exposure Data Jingtao
學習了一個embedding-based的負樣本生成器脸爱。為另一個推薦器提供有力的負樣本進行pair-wise learning未妹。
- 負樣本生成
SLATEQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets
推薦一個slate的物品簿废,強化的Action定義在slate上络它,通過假設(shè)簡化到item上族檬。轉(zhuǎn)化成q-function的學習和一個choice model化戳,通過松弛和線性規(guī)劃完成k-set的選擇单料。
- 線性規(guī)劃
Heterogeneous Information Network
Learning Shared Vertex Representation in Heterogeneous Graphs with Convolutional Networks for Recommendation
構(gòu)建三個網(wǎng)絡,item-item網(wǎng)絡扫尖,user-item網(wǎng)絡,user-subseq網(wǎng)絡(n-item subsequences)换怖。使用GCN建模甩恼。
- GCN
Unified Embedding Model over Heterogeneous Information Network for Personalized Recommendation
使用全部的meta-path信息去學習一個統(tǒng)一的user和item的embedding沉颂。
- meta-path
網(wǎng)絡結(jié)構(gòu)
Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendatio
構(gòu)造了新的RNN結(jié)構(gòu)來建模用戶序列条摸,使用attention機制融合長短興趣铸屉,在工業(yè)和公開數(shù)據(jù)上取得SOTA钉蒲。
- RNN改進
BPAM: Recommendation Based on BP Neural Network with Attention Mechanism
使用DNN建模彻坛,增加attention機制顷啼,降低計算和存儲成本小压,并降低過擬合風險线梗。
- DNN+Attention
CFM: Convolutional Factorization Machines for Context-Aware Recommendation
通過卷積結(jié)構(gòu)怠益,彌補FM的能力的不足仪搔,F(xiàn)M的二階交叉使用外積蜻牢,構(gòu)造出一個三維的交互tensor烤咧,在其上使用3D卷積
- FM外積+3D卷積
Collaborative Metric Learning with Memory Network for Multi-Relational Recommender Systems
利用多種用戶行為抢呆,結(jié)合Memory Network煮嫌,能建模細粒度的用戶畫像抱虐。
- Memory Network
Convolutional Gaussian Embeddings for Personalized Recommendation with Uncertainty
使用Gaussian embeddings來描述用戶意圖的不確定性昌阿,在建模時使用了Monte-Carlo采樣和卷積神經(jīng)網(wǎng)絡
- Gaussian embeddings
RecoNet: An Interpretable Neural Architecture
for Recommender Systems
在特征級別上有更好的解釋性恳邀。能夠適應冷啟動的情況懦冰。
- 解釋性
PD-GAN: Adversarial Learning for Personalized Diversity-Promoting Recommendation
結(jié)合DPP核矩陣生成兼具相關(guān)性和多樣性的推薦谣沸。學習用到了GAN和pair-wise learning刷钢。
- GAN
STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for
Recommender Systems
- GCN
Bundle Recommendation
Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network
Correlation-Sensitive Next-Basket Recommendation
考慮購物籃中商品pair-wise的Correlation乳附。
Explainable Recommendation
Co-Attentive Multi-Task Learning for Explainable Recommendation
多任務内地,一個任務做推薦,一個任務做解釋性阱缓,提供語義解釋非凌。
- Multi-Task
Explainable Fashion Recommendation: A Semantic Attribute Region Guided Approach
推薦服飾茬祷。引入細粒度解釋空間清焕,通過兩個網(wǎng)絡分別將用戶和物品映射到空間祭犯,完成推薦和解釋。
- 解釋性空間
Socail Recommendation
Discrete Trust-aware Matrix Factorization for Fast Recommendation
增加可信度約束矩陣來約束用戶之間的社會關(guān)系沃粗,進行推薦。其中用戶和物品向量都是零一向量键畴,使用海明距離。
- 約束矩陣
Recommending Links to Maximize the Influence in Social Networks
關(guān)注關(guān)系推薦起惕。不使用鏈接數(shù)評估節(jié)點的影響涡贱,而使用對用戶觀點產(chǎn)生變化來評估影響力惹想,可以通過更少的連接關(guān)系和更小的計算量问词,達到更大的影響力。
Feature Evolution Based Multi-Task Learning for Collaborative Filtering with Social Trust.
通過建模用戶偏好向量和用戶關(guān)系向量進行推薦嘀粱。同時預測關(guān)系概率和點擊率激挪。
Deep Adversarial Social Recommendation
通過對抗學習,學習用戶在item域和social域的雙向關(guān)聯(lián)映射锋叨。
- 對抗
Graph Convolutional Networks on User Mobility Heterogeneous Graphs
for Social Relationship Inference
- GCN
POI Recommendation
Geo-ALM: POI Recommendation by Fusing Geographical Information and
Adversarial Learning Mechanism
其他
Hybrid Item-Item Recommendation via Semi-Parametric Embedding
一個item-embedding架構(gòu)垄分,能夠利用side-information,緩解冷啟動娃磺。
XMind: ZEN - Trial Version