圖像分類實(shí)踐

啟動(dòng)Jupyter

docker run -d -p 8888:8888 tensorflow/tensorflow:latest-py3-jupter
進(jìn)入容器
docker exec -it 〈nmae〉bash

安裝PyTorch

無GPU安裝


pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

安裝fastai

pip install fastai
如果遇到問題安裝Bootleneck 1.2.1
pip install Bottleneck==1.2.1
然后重新安裝fastai
環(huán)境準(zhǔn)備好了

可以編程了

%reload_ext autoreload
%autoreload 2
%matplotlib inline
from fastai.vision import *
from fastai.metrics import error_rate
#bs = 64 #too big for vm,need too many RAM
bs = 8
path = untar_data(URLs.PETS); path

path.ls()
[PosixPath('/root/.fastai/data/oxford-iiit-pet/images'),
 PosixPath('/root/.fastai/data/oxford-iiit-pet/annotations')]
path_anno = path/'annotations'
path_img = path/'images'
fnames = get_image_files(path_img)
fnames[:5]
[PosixPath('/root/.fastai/data/oxford-iiit-pet/images/Siamese_87.jpg'),
 PosixPath('/root/.fastai/data/oxford-iiit-pet/images/chihuahua_126.jpg'),
 PosixPath('/root/.fastai/data/oxford-iiit-pet/images/german_shorthaired_97.jpg'),
 PosixPath('/root/.fastai/data/oxford-iiit-pet/images/Bombay_157.jpg'),
 PosixPath('/root/.fastai/data/oxford-iiit-pet/images/Bengal_12.jpg')]
np.random.seed(2)
pat = r'/([^/]+)_\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224, bs=bs
                                  ).normalize(imagenet_stats)
#data.show_batch(rows=3, figsize=(7,6))
print(data.classes)
len(data.classes),data.c
['Abyssinian', 'Bengal', 'Birman', 'Bombay', 'British_Shorthair', 'Egyptian_Mau', 'Maine_Coon', 'Persian', 'Ragdoll', 'Russian_Blue', 'Siamese', 'Sphynx', 'american_bulldog', 'american_pit_bull_terrier', 'basset_hound', 'beagle', 'boxer', 'chihuahua', 'english_cocker_spaniel', 'english_setter', 'german_shorthaired', 'great_pyrenees', 'havanese', 'japanese_chin', 'keeshond', 'leonberger', 'miniature_pinscher', 'newfoundland', 'pomeranian', 'pug', 'saint_bernard', 'samoyed', 'scottish_terrier', 'shiba_inu', 'staffordshire_bull_terrier', 'wheaten_terrier', 'yorkshire_terrier']





(37, 37)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.model
Sequential(
  (0): Sequential(
    (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (4): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (1): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (5): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (3): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (6): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (3): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (4): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (5): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (7): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (1): Sequential(
    (0): AdaptiveConcatPool2d(
      (ap): AdaptiveAvgPool2d(output_size=1)
      (mp): AdaptiveMaxPool2d(output_size=1)
    )
    (1): Flatten()
    (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (3): Dropout(p=0.25, inplace=False)
    (4): Linear(in_features=1024, out_features=512, bias=True)
    (5): ReLU(inplace=True)
    (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (7): Dropout(p=0.5, inplace=False)
    (8): Linear(in_features=512, out_features=37, bias=True)
  )
)
#learn.fit_one_cycle(1) # 4 cycle is recommend,train first time
#learn.save('stage-1') # save modle for stage-2
#learn.load('stage-1')#  stage-2
#learn.export()# for predict
learn = load_learner('/root/.fastai/data/oxford-iiit-pet/images/')
defaults.device = torch.device('cpu')
# stage-2
#learn.lr_find()
#learn.recorder.plot()
#learn.unfreeze()
#learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4))
#predict
img = open_image('/root/.fastai/data/test/1.jpg')
pred_class,pred_idx,outputs = learn.predict(img)
pred_class
Category shiba_inu

總結(jié)

訓(xùn)練的速度很慢(二十分鐘),也使用了弱化的參數(shù)控硼,所以準(zhǔn)確率其實(shí)沒有課程中那么高麻裁。硬件也很重要。這個(gè)系統(tǒng)被簡(jiǎn)化的很厲害即使什么也不懂滔金,也可以達(dá)到很好的效果封寞。卷積神經(jīng)網(wǎng)絡(luò)很強(qiáng)大咱揍。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市惊科,隨后出現(xiàn)的幾起案子拍摇,更是在濱河造成了極大的恐慌,老刑警劉巖馆截,帶你破解...
    沈念sama閱讀 211,948評(píng)論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件充活,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡蜡娶,警方通過查閱死者的電腦和手機(jī)混卵,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,371評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來窖张,“玉大人幕随,你說我怎么就攤上這事∷藿樱” “怎么了赘淮?”我有些...
    開封第一講書人閱讀 157,490評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)睦霎。 經(jīng)常有香客問我梢卸,道長(zhǎng),這世上最難降的妖魔是什么副女? 我笑而不...
    開封第一講書人閱讀 56,521評(píng)論 1 284
  • 正文 為了忘掉前任蛤高,我火速辦了婚禮,結(jié)果婚禮上肮塞,老公的妹妹穿的比我還像新娘襟齿。我一直安慰自己姻锁,他們只是感情好枕赵,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,627評(píng)論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著位隶,像睡著了一般拷窜。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,842評(píng)論 1 290
  • 那天篮昧,我揣著相機(jī)與錄音赋荆,去河邊找鬼。 笑死懊昨,一個(gè)胖子當(dāng)著我的面吹牛窄潭,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播酵颁,決...
    沈念sama閱讀 38,997評(píng)論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼嫉你,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了躏惋?” 一聲冷哼從身側(cè)響起幽污,我...
    開封第一講書人閱讀 37,741評(píng)論 0 268
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎簿姨,沒想到半個(gè)月后距误,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,203評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡扁位,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,534評(píng)論 2 327
  • 正文 我和宋清朗相戀三年准潭,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片贤牛。...
    茶點(diǎn)故事閱讀 38,673評(píng)論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡惋鹅,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出殉簸,到底是詐尸還是另有隱情闰集,我是刑警寧澤,帶...
    沈念sama閱讀 34,339評(píng)論 4 330
  • 正文 年R本政府宣布般卑,位于F島的核電站武鲁,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏蝠检。R本人自食惡果不足惜沐鼠,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,955評(píng)論 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望叹谁。 院中可真熱鬧饲梭,春花似錦、人聲如沸焰檩。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,770評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽析苫。三九已至兜叨,卻和暖如春穿扳,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背国旷。 一陣腳步聲響...
    開封第一講書人閱讀 32,000評(píng)論 1 266
  • 我被黑心中介騙來泰國(guó)打工矛物, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人跪但。 一個(gè)月前我還...
    沈念sama閱讀 46,394評(píng)論 2 360
  • 正文 我出身青樓履羞,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親屡久。 傳聞我的和親對(duì)象是個(gè)殘疾皇子吧雹,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,562評(píng)論 2 349

推薦閱讀更多精彩內(nèi)容