個(gè)人博客:https://lightnine.github.io,歡迎大家交流
最近這段時(shí)間一直在學(xué)習(xí)docker的使用,以及如何在docker中使用tensorflow.今天就把在docker中如何使用tensorflow記錄一下.
docker安裝
我是把docker安裝在centos 7.4操作系統(tǒng)上面,在vmware中裝的centos,vmware中安裝centos很簡(jiǎn)單.具體的網(wǎng)絡(luò)配置可以參考vmware nat配置.docker安裝很簡(jiǎn)單,找到docker官網(wǎng),直接按照上面的步驟安裝即可.運(yùn)行docker version
查看版本如下
因?yàn)閐ocker 采用的是客戶端/服務(wù)端的結(jié)構(gòu),所以這里可以看到client以及server,它們分別都有版本號(hào).
tensorflow
在docker中運(yùn)行tensorflow的第一步就是要找到自己需要的鏡像,我們可以去docker hub找到自己需要的tensorflow鏡像.tensorflow的鏡像主要分兩類,一種是在CPU上面跑的,還有一種是在GPU上面跑的,如果需要GPU的,那么還需要安裝nvidia-docker.這里我使用的是CPU版本的.當(dāng)然我們還需要選擇具體的tensorflow版本.這里我拉取的命令如下:
docker pull tensorflow/tensorflow:1.9.0-devel-py3
拉取成功之后,運(yùn)行docker images
可以看到有tensorflow鏡像.
tensorflow在docker中使用
docker run -it -p 8888:8888 --name tf-1.9 tensorflow/tensorflow:1.9.0-devel-py3
運(yùn)行上面的命令,在容器中啟動(dòng)鏡像.-p
表示指定端口映射,即將本機(jī)的8888端口映射到容器的8888端口.--name
用來指定容器的名字為tf-1.9
.因?yàn)檫@里采用的鏡像是devel模式的,所以默認(rèn)不啟動(dòng)jupyter.如果想使用默認(rèn)啟動(dòng)jupyter的鏡像,那么直接拉取不帶devel的鏡像就可以.即拉取最近的鏡像docker pull tensorflow/tensorflow
啟動(dòng)之后,我們就進(jìn)入了容器,ls /
查看容器根目錄內(nèi)容,可以看到有run_jupyter.sh
文件.運(yùn)行此文件,即在根目錄下執(zhí)行./run_jupyter.sh --allow-root
,--allow-root
參數(shù)是因?yàn)閖upyter啟動(dòng)不推薦使用root,這里是主動(dòng)允許使用root.然后在瀏覽器中就可以訪問jupyter的內(nèi)容了.
創(chuàng)建自己的鏡像
上面僅僅是跑了一個(gè)什么都沒有的鏡像,如果我們需要在鏡像里面跑我們的深度學(xué)習(xí)程序怎么辦呢?這首先做的第一步就是要制作我們自己的鏡像.這里我們跑一個(gè)簡(jiǎn)單的mnist數(shù)據(jù)集,程序可以直接去tensorflow上面找一個(gè)例子程序.這里我的程序如下:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
This should achieve a test error of 0.7%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to execute a short self-test.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import gzip
import os
import sys
import time
import logging
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
# 如果WORK_DIRECTORY中沒有需要的數(shù)據(jù),則從此地址下載數(shù)據(jù)
SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
# 訓(xùn)練數(shù)據(jù)位置
# WORK_DIRECTORY = 'data'
WORK_DIRECTORY = './MNIST-data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10
EVAL_BATCH_SIZE = 64
EVAL_FREQUENCY = 100 # Number of steps between evaluations.
FLAGS = None
# 打印信息設(shè)置
# logging.basicConfig(format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s',
# level=logging.DEBUG)
logging.basicConfig(level=logging.DEBUG, # 控制臺(tái)打印的日志級(jí)別
filename='cnn_mnist.log',
filemode='a', # 模式椭微,有w和a暇赤,w就是寫模式,每次都會(huì)重新寫日志薇芝,覆蓋之前的日志
# a是追加模式,默認(rèn)如果不寫的話,就是追加模式
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
# 日志格式
)
def data_type():
"""Return the type of the activations, weights, and placeholder variables."""
if FLAGS.use_fp16:
return tf.float16
else:
return tf.float32
def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
logging.info('Extracting' + filename)
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
return data
def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
logging.info('Extracting' + filename)
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels
def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in xrange(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0])
def main(_):
if FLAGS.self_test:
logging.info('Running self-test.')
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0]
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
train_data_node = tf.placeholder(
data_type(),
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
data_type(),
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.global_variables_initializer().run()}
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED, dtype=data_type()))
conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type()))
conv2_weights = tf.Variable(tf.truncated_normal(
[5, 5, 32, 64], stddev=0.1,
seed=SEED, dtype=data_type()))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type()))
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type()))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc2_biases = tf.Variable(tf.constant(
0.1, shape=[NUM_LABELS], dtype=data_type()))
# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases
# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=train_labels_node, logits=logits))
# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0, dtype=data_type())
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))
# Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
logging.error("batch size for evals larger than dataset: %d" % size)
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions
# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.global_variables_initializer().run()
logging.info('Initialized!')
print('Initialized!')
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the optimizer to update weights.
sess.run(optimizer, feed_dict=feed_dict)
# print some extra information once reach the evaluation frequency
if step % EVAL_FREQUENCY == 0:
# fetch some extra nodes' data
l, lr, predictions = sess.run([loss, learning_rate, train_prediction],
feed_dict=feed_dict)
elapsed_time = time.time() - start_time
start_time = time.time()
logging.info('Step %d (epoch %.2f), %.1f ms' %(step, float(step) * BATCH_SIZE / train_size, 1000 * elapsed_time / EVAL_FREQUENCY))
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
logging.info('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
logging.info('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
logging.info('Validation error: %.1f%%' % error_rate(eval_in_batches(validation_data, sess), validation_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
logging.info('Test error: %.1f%%' % test_error)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
logging.info('test_error' + test_error)
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
test_error,)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_fp16',
default=False,
help='Use half floats instead of full floats if True.',
action='store_true')
parser.add_argument(
'--self_test',
default=False,
action='store_true',
help='True if running a self test.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
這里我在原來的程序基礎(chǔ)上面稍微改了下,因?yàn)槲乙呀?jīng)提前將數(shù)據(jù)下載好了,所以我讓程序直接讀取本機(jī)指定目錄下的訓(xùn)練數(shù)據(jù),同時(shí)增加了日志文件輸出.這是為了在公司的容器云平臺(tái)上測(cè)試獲取容器輸出文件
編寫Dockerfile
我們可以在我們的用戶目錄下,創(chuàng)建一個(gè)空的文件夾,將mnist數(shù)據(jù)集以及程序文件都拷貝進(jìn)這個(gè)文件夾下.其實(shí)數(shù)據(jù)集應(yīng)該是放在數(shù)據(jù)卷中,但是這里為了方便,我直接將訓(xùn)練數(shù)據(jù)打進(jìn)了鏡像中.然后創(chuàng)建Dockerfile,文件內(nèi)容如下
FROM tensorflow/tensorflow:1.9.0-devel-py3
COPY . /home/ll
WORKDIR /home/ll
CMD ['python', 'convolutional.py']
即Dockerfile文件中最后一行表示容器啟動(dòng)的運(yùn)行的命令
build鏡像
docker build -t tf:1.9 .
-t
參數(shù)指定鏡像跟tag,最后的.
指定了鏡像中的上下文.構(gòu)建完之后使用docker images
可以查看多了tf:1.9
鏡像
運(yùn)行鏡像
運(yùn)行下面的命令,運(yùn)行上一步構(gòu)建好的鏡像
docker run -it --name test tf:1.9
然后就能夠看到訓(xùn)練的輸出.
同時(shí)可以在看一個(gè)連接,進(jìn)入容器,即運(yùn)行下面命令
docker exec -it test /bin/bash
可以看到如下內(nèi)容
即看到了cnn_mnist.log的日志輸出文件