寫(xiě)在前面
R包是多個(gè)函數(shù)的集合幕帆,具有詳細(xì)的說(shuō)明和示例。
學(xué)生信,R語(yǔ)言必學(xué)的原因是豐富的圖表和Biocductor上面的各種生信分析R包各薇。 包的使用是一通百通的君躺,我們以dplyr為例峭判,講一下R包。
安裝和加載R包
1.鏡像設(shè)置
兩行代碼↓可以搞定棕叫,但這個(gè)方法并不適用于每個(gè)電腦林螃,有一部分會(huì)失敗。隨緣俺泣,失敗的話就每次需要下載R包時(shí)運(yùn)行這兩句代碼即可疗认。
你還在每次配置Rstudio的下載鏡像嗎?
2.安裝
確保聯(lián)網(wǎng)再操作伏钠。横漏。。不然就尷尬了熟掂。
R包安裝命令是install.packages(“包”)
或者BiocManager::install(“包”)
缎浇。取決于你要安裝的包存在于CRAN網(wǎng)站還是Biocductor,存在于哪里赴肚?可以谷歌搜到素跺。
3.加載
下面兩個(gè)命令均可鹏秋。
library(包)
require(包)
安裝加載三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
示例數(shù)據(jù)直接使用內(nèi)置數(shù)據(jù)集iris的簡(jiǎn)化版:
test <- iris[c(1:2,51:52,101:102),]
dplyr五個(gè)基礎(chǔ)函數(shù)
注意,井號(hào)開(kāi)頭的是代碼運(yùn)行記錄亡笑÷乱模可以和自己的運(yùn)行結(jié)果做對(duì)比
1.mutate(),新增列
mutate(test, new = Sepal.Length * Sepal.Width)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species new
## 1 5.1 3.5 1.4 0.2 setosa 17.85
## 2 4.9 3.0 1.4 0.2 setosa 14.70
## 3 7.0 3.2 4.7 1.4 versicolor 22.40
## 4 6.4 3.2 4.5 1.5 versicolor 20.48
## 5 6.3 3.3 6.0 2.5 virginica 20.79
## 6 5.8 2.7 5.1 1.9 virginica 15.66
2.select(),按列篩選
(1)按列號(hào)篩選
select(test,1)
## Sepal.Length
## 1 5.1
## 2 4.9
## 51 7.0
## 52 6.4
## 101 6.3
## 102 5.8
select(test,c(1,5))
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 51 7.0 versicolor
## 52 6.4 versicolor
## 101 6.3 virginica
## 102 5.8 virginica
select(test,Sepal.Length)
## Sepal.Length
## 1 5.1
## 2 4.9
## 51 7.0
## 52 6.4
## 101 6.3
## 102 5.8
(2)按列名篩選
select(test, Petal.Length, Petal.Width)
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
3.filter()篩選行
filter(test, Species == "setosa")
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
filter(test, Species %in% c("setosa","versicolor"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 7.0 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
4.arrange(),按某1列或某幾列對(duì)整個(gè)表格進(jìn)行排序
arrange(test, Sepal.Length)#默認(rèn)從小到大排序
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.0 1.4 0.2 setosa
## 2 5.1 3.5 1.4 0.2 setosa
## 3 5.8 2.7 5.1 1.9 virginica
## 4 6.3 3.3 6.0 2.5 virginica
## 5 6.4 3.2 4.5 1.5 versicolor
## 6 7.0 3.2 4.7 1.4 versicolor
arrange(test, desc(Sepal.Length))#用desc從大到小
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.0 3.2 4.7 1.4 versicolor
## 2 6.4 3.2 4.5 1.5 versicolor
## 3 6.3 3.3 6.0 2.5 virginica
## 4 5.8 2.7 5.1 1.9 virginica
## 5 5.1 3.5 1.4 0.2 setosa
## 6 4.9 3.0 1.4 0.2 setosa
arrange(test, Sepal.Length, desc(Sepal.Width))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.0 1.4 0.2 setosa
## 2 5.1 3.5 1.4 0.2 setosa
## 3 5.8 2.7 5.1 1.9 virginica
## 4 6.3 3.3 6.0 2.5 virginica
## 5 6.4 3.2 4.5 1.5 versicolor
## 6 7.0 3.2 4.7 1.4 versicolor
5.summarise():匯總
對(duì)數(shù)據(jù)進(jìn)行匯總操作,結(jié)合group_by使用實(shí)用性強(qiáng)
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 計(jì)算Sepal.Length的平均值和標(biāo)準(zhǔn)差
## mean(Sepal.Length) sd(Sepal.Length)
## 1 5.916667 0.8084965
# 先按照Species分組,計(jì)算每組Sepal.Length的平均值和標(biāo)準(zhǔn)差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups: Species [3]
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## * <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 7 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
## 5 6.3 3.3 6 2.5 virginica
## 6 5.8 2.7 5.1 1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
## <fct> <dbl> <dbl>
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
dplyr兩個(gè)實(shí)用技能
1:管道操作 %>% (cmd/ctr + shift + M)
(加載任意一個(gè)tidyverse包即可用管道符號(hào))
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
## <fct> <dbl> <dbl>
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
2:count統(tǒng)計(jì)某列的unique值
count(test,Species)
## # A tibble: 3 x 2
## Species n
## <fct> <int>
## 1 setosa 2
## 2 versicolor 2
## 3 virginica 2
dplyr處理關(guān)系數(shù)據(jù)
即將2個(gè)表進(jìn)行連接仑乌,注意:不要引入factor
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
## x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
## x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6
1.內(nèi)連inner_join,取交集
inner_join(test1, test2, by = "x")
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
2.左連left_join
left_join(test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
left_join(test2, test1, by = 'x')
## x y z
## 1 a 1 <NA>
## 2 b 2 A
## 3 c 3 <NA>
## 4 d 4 <NA>
## 5 e 5 B
## 6 f 6 C
3.全連full_join
full_join( test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
## 5 a <NA> 1
## 6 c <NA> 3
## 7 d <NA> 4
4.半連接:返回能夠與y表匹配的x表所有記錄semi_join
semi_join(x = test1, y = test2, by = 'x')
## x z
## 1 b A
## 2 e B
## 3 f C
5.反連接:返回?zé)o法與y表匹配的x表的所記錄anti_join
anti_join(x = test2, y = test1, by = 'x')
## x y
## 1 a 1
## 2 c 3
## 3 d 4
6.簡(jiǎn)單合并
在相當(dāng)于base包里的cbind()函數(shù)和rbind()函數(shù);注意百拓,bind_rows()函數(shù)需要兩個(gè)表格列數(shù)相同,而bind_cols()函數(shù)則需要兩個(gè)數(shù)據(jù)框有相同的行數(shù)
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
## x y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
## z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
## x y z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400
微信公眾號(hào)生信星球同步更新我的文章晰甚,歡迎大家掃碼關(guān)注衙传!
我們有為生信初學(xué)者準(zhǔn)備的學(xué)習(xí)小組,點(diǎn)擊查看??
想要參加我的線上線下課程,也可加好友咨詢(xún)??
如果需要提問(wèn)厕九,請(qǐng)先看生信星球答疑公告