Kaggle初探--房價(jià)預(yù)測案例之模型建立

概述

本文數(shù)據(jù)來源kaggle的House Prices: Advanced Regression Techniques大賽。

本文接著Kaggle 初探 -- 房價(jià)預(yù)測案例之?dāng)?shù)據(jù)分析做模型部分。

import pandas as pd
import numpy as np
import seaborn as sns
from scipy import stats
from scipy.stats import skew
from scipy.stats import norm
import matplotlib
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# import warnings
# warnings.filterwarnings('ignore')

%config InlineBackend.figure_format = 'retina' #set 'png' here when working on notebook
%matplotlib inline
train_df = pd.read_csv("../input/train.csv")
test_df = pd.read_csv("../input/test.csv")

特征工程

此處特征的處理根據(jù)Kaggle 初探 -- 房價(jià)預(yù)測案例之?dāng)?shù)據(jù)分析的分析來做冒签。

all_df = pd.concat((train_df.loc[:,'MSSubClass':'SaleCondition'], test_df.loc[:,'MSSubClass':'SaleCondition']), axis=0,ignore_index=True)
all_df['MSSubClass'] = all_df['MSSubClass'].astype(str)
quantitative = [f for f in all_df.columns if all_df.dtypes[f] != 'object']
qualitative = [f for f in all_df.columns if all_df.dtypes[f] == 'object']

缺失數(shù)據(jù)處理

對(duì)于缺失數(shù)據(jù)垢乙,我們直接將列刪除

missing = all_df.isnull().sum()
missing.sort_values(inplace=True,ascending=False)
missing = missing[missing > 0]
#dealing with missing data
all_df = all_df.drop(missing[missing>1].index,1)
# 對(duì)于missing 1 的我們到時(shí)候以平均數(shù)填充
all_df.isnull().sum()[all_df.isnull().sum()>0]
Exterior1st    1
Exterior2nd    1
BsmtFinSF1     1
BsmtFinSF2     1
BsmtUnfSF      1
TotalBsmtSF    1
Electrical     1
KitchenQual    1
GarageCars     1
GarageArea     1
SaleType       1
dtype: int64

處理log項(xiàng)

GrLivArea梨州、1stFlrSF叭披、2ndFlrSF、TotalBsmtSF宙暇、LotArea、KitchenAbvGr议泵、GarageArea 以上特征我們進(jìn)行l(wèi)ogp處理

logfeatures = ['GrLivArea','1stFlrSF','2ndFlrSF','TotalBsmtSF','LotArea','KitchenAbvGr','GarageArea']
for logfeature in logfeatures:
    all_df[logfeature] = np.log1p(all_df[logfeature].values)

處理Boolean變量

all_df['HasBasement'] = all_df['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasGarage'] = all_df['GarageArea'].apply(lambda x: 1 if x > 0 else 0)
all_df['Has2ndFloor'] = all_df['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasWoodDeck'] = all_df['WoodDeckSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasPorch'] = all_df['OpenPorchSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasPool'] = all_df['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
all_df['IsNew'] = all_df['YearBuilt'].apply(lambda x: 1 if x > 2000 else 0)
quantitative = [f for f in all_df.columns if all_df.dtypes[f] != 'object']
qualitative = [f for f in all_df.columns if all_df.dtypes[f] == 'object']

對(duì)于定性變量的encode

all_dummy_df = pd.get_dummies(all_df)

對(duì)于數(shù)值變量進(jìn)行標(biāo)準(zhǔn)化

all_dummy_df.isnull().sum().sum()
6
mean_cols = all_dummy_df.mean()
all_dummy_df = all_dummy_df.fillna(mean_cols)
all_dummy_df.isnull().sum().sum()
0
X = all_dummy_df[quantitative]
std = StandardScaler()
s = std.fit_transform(X)
all_dummy_df[quantitative] = s
dummy_train_df = all_dummy_df.loc[train_df.index]
dummy_test_df = all_dummy_df.loc[test_df.index]
y_train = np.log(train_df.SalePrice)

模型預(yù)測

此處我們先運(yùn)用多個(gè)模型進(jìn)行預(yù)測占贫,最后進(jìn)行bagging操作

嶺回歸

from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
y_train.values
array([ 12.24769432,  12.10901093,  12.31716669, ...,  12.49312952,
        11.86446223,  11.90158345])
def rmse_cv(model):
    rmse= np.sqrt(-cross_val_score(model, dummy_train_df, y_train.values, scoring="neg_mean_squared_error", cv = 5))
    return(rmse)
alphas = np.logspace(-3, 2, 50)
cv_ridge = []
coefs = []
for alpha in alphas:
    model = Ridge(alpha = alpha)
    model.fit(dummy_train_df,y_train)
    cv_ridge.append(rmse_cv(model).mean())
    coefs.append(model.coef_)
import matplotlib.pyplot as plt
%matplotlib inline
cv_ridge = pd.Series(cv_ridge, index = alphas)
cv_ridge.plot(title = "Validation - Just Do It")
plt.xlabel("alpha")
plt.ylabel("rmse")
# plt.plot(alphas, cv_ridge)
# plt.title("Alpha vs CV Error")
<matplotlib.text.Text at 0x118dd0ef0>
output_30_1.png
# 嶺跡圖
# matplotlib.rcParams['figure.figsize'] = (12.0, 12.0)
ax = plt.gca()

# ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm'])

ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1])  # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()
output_31_0.png

很尷尬的嶺跡圖,主要是現(xiàn)在feature太多了先口⌒桶拢看不出什么東西來

Lasso

Lasso能針對(duì)上面特征太多的問題,來選擇一部分重要的特征

from sklearn.linear_model import Lasso,LassoCV
# alphas = np.logspace(-3, 2, 50)
# alphas = [1, 0.1, 0.001, 0.0005]
alphas = np.logspace(-4, -2, 100)
cv_lasso = []
coefs = []
for alpha in alphas:
    model = Lasso(alpha = alpha,max_iter=5000)
    model.fit(dummy_train_df,y_train)
    cv_lasso.append(rmse_cv(model).mean())
    coefs.append(model.coef_)
cv_lasso = pd.Series(cv_lasso, index = alphas)
cv_lasso.plot(title = "Validation - Just Do It")
plt.xlabel("alpha")
plt.ylabel("rmse")
# plt.plot(alphas, cv_ridge)
# plt.title("Alpha vs CV Error")
<matplotlib.text.Text at 0x118bca940>
output_36_1.png
print(cv_lasso.min(), cv_lasso.argmin())
0.128843680722 0.000585702081806
model = Lasso(alpha = 0.00058,max_iter=5000)
model.fit(dummy_train_df,y_train)
Lasso(alpha=0.00058, copy_X=True, fit_intercept=True, max_iter=5000,
   normalize=False, positive=False, precompute=False, random_state=None,
   selection='cyclic', tol=0.0001, warm_start=False)
coef = pd.Series(model.coef_, index = dummy_train_df.columns)
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " +  str(sum(coef == 0)) + " variables")
Lasso picked 84 variables and eliminated the other 142 variables
imp_coef = pd.concat([coef.sort_values().head(10),
                     coef.sort_values().tail(10)])
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Coefficients in the Lasso Model")
<matplotlib.text.Text at 0x11aa1dbe0>
output_42_1.png

Elastic Net

結(jié)合了 Lasso 和 Ridge 兩個(gè)模型碉京,既能解決 Lasso 的共線問題厢汹,又能很好的篩選變量

from sklearn.linear_model import ElasticNet,ElasticNetCV
elastic = ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], 
                                    alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75], cv=5,max_iter=5000)
elastic.fit(dummy_train_df, y_train)
ElasticNetCV(alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75],
       copy_X=True, cv=5, eps=0.001, fit_intercept=True,
       l1_ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1], max_iter=5000,
       n_alphas=100, n_jobs=1, normalize=False, positive=False,
       precompute='auto', random_state=None, selection='cyclic',
       tol=0.0001, verbose=0)
rmse_cv(elastic).mean()
0.12908591441325348

特征二

很尷尬的發(fā)現(xiàn)這種提取特征的方式,取得的結(jié)果不是很好谐宙,所以烫葬,此處我們采用https://www.kaggle.com/opanichev/ensemble-of-4-models-with-cv-lb-0-11489 這篇文章的方式來處理特征

import utils
train_df_munged,label_df,test_df_munged = utils.feature_engineering()
Training set size: (1456, 111)
Test set size: (1459, 111)
Features engineering..
0:00:14.427659
test_df = pd.read_csv('../input/test.csv')
from sklearn.metrics import mean_squared_error,make_scorer
from sklearn.model_selection import cross_val_score
# 定義自己的score函數(shù)
def my_custom_loss_func(ground_truth, predictions):
    return np.sqrt(mean_squared_error(np.exp(ground_truth), np.exp(predictions)))

my_loss_func  = make_scorer(my_custom_loss_func, greater_is_better=False)
def rmse_cv2(model):
    rmse= np.sqrt(-cross_val_score(model, train_df_munged, label_df.SalePrice, scoring='neg_mean_squared_error', cv = 5))
    return(rmse)

L2 嶺回歸

from sklearn.linear_model import RidgeCV,Ridge
alphas = np.logspace(-3, 2, 100)
model_ridge = RidgeCV(alphas=alphas).fit(train_df_munged, label_df.SalePrice)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_ridge = model_ridge.predict(train_df_munged)
print("Ridge score on training set: ", model_ridge.score(train_df_munged,label_df.SalePrice))
Ridge score on training set:  0.940191172098
print("cross_validation: ",rmse_cv2(model_ridge).mean())
cross_validation:  0.111384227695

Lasso

from sklearn.linear_model import Lasso,LassoCV
model_lasso = LassoCV(eps=0.0001,max_iter=20000).fit(train_df_munged, label_df.SalePrice)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_lasso = model_lasso.predict(train_df_munged)
print("Lasso score on training set: ", model_lasso.score(train_df_munged,label_df.SalePrice))
Lasso score on training set:  0.940560493411
print("cross_validation: ",rmse_cv2(model_lasso).mean())
cross_validation:  0.11036670335

Elastic Net

from sklearn.linear_model import ElasticNet,ElasticNetCV
model_elastic = ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], 
                                    alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75], cv=5,max_iter=10000)
model_elastic.fit(train_df_munged, label_df.SalePrice)
ElasticNetCV(alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75],
       copy_X=True, cv=5, eps=0.001, fit_intercept=True,
       l1_ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1], max_iter=10000,
       n_alphas=100, n_jobs=1, normalize=False, positive=False,
       precompute='auto', random_state=None, selection='cyclic',
       tol=0.0001, verbose=0)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_elastic = model_elastic.predict(train_df_munged)
print("Elastic score on training set: ", model_elastic.score(train_df_munged,label_df.SalePrice))
Elastic score on training set:  0.940707195529
print("cross_validation: ",rmse_cv2(model_elastic).mean())
cross_validation:  0.109106832215

XGBoost

參看:https://www.kaggle.com/aharless/amit-choudhary-s-kernel-notebook-ified

此處XGBoost怎么進(jìn)行調(diào)優(yōu)缺失

# XGBoost -- I did some "manual" cross-validation here but should really find
# these hyperparameters using CV. ;-)

import xgboost as xgb

model_xgb = xgb.XGBRegressor(
                 colsample_bytree=0.2,
                 gamma=0.0,
                 learning_rate=0.05,
                 max_depth=6,
                 min_child_weight=1.5,
                 n_estimators=7200,                                                                  
                 reg_alpha=0.9,
                 reg_lambda=0.6,
                 subsample=0.2,
                 seed=42,
                 silent=1)

model_xgb.fit(train_df_munged, label_df.SalePrice)

# Run prediction on training set to get a rough idea of how well it does.
pred_Y_xgb = model_xgb.predict(train_df_munged)
print("XGBoost score on training set: ", model_xgb.score(train_df_munged,label_df.SalePrice)) # 過擬合
XGBoost score on training set:  0.990853904354
print("cross_validation: ",rmse_cv2(model_xgb).mean())
cross_validation:  0.11857237109
print("score: ",mean_squared_error(model_xgb.predict(train_df_munged),label_df.SalePrice))
score:  0.0014338471114

Ensemble

from sklearn.linear_model import LinearRegression
# Create linear regression object
regr = LinearRegression()
train_x = np.concatenate(
    (pred_Y_lasso[np.newaxis, :].T,pred_Y_ridge[np.newaxis, :].T,
     pred_Y_elastic[np.newaxis, :].T,pred_Y_xgb[np.newaxis, :].T), axis=1)
regr.fit(train_x,label_df.SalePrice)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
regr.coef_
array([ 2.28665601, -0.15426296, -2.43483763,  1.30394217])
print("Ensemble score on training set: ", regr.score(train_x,label_df.SalePrice)) # 過擬合
Ensemble score on training set:  0.993716162184

很尷尬的發(fā)現(xiàn)通過ensemble操作并沒有任何幫助

print("score: ",mean_squared_error(regr.predict(train_x),label_df.SalePrice))
score:  0.000985126664884

提交答案

model_lasso.predict(test_df_munged)[np.newaxis, :].T
array([ 11.67407587,  11.95939264,  12.11110308, ...,  12.01706033,
        11.70077616,  12.29221647])
test_x = np.concatenate(
(model_lasso.predict(test_df_munged)[np.newaxis, :].T,model_ridge.predict(test_df_munged)[np.newaxis, :].T,
                           model_elastic.predict(test_df_munged)[np.newaxis, :].T, model_xgb.predict(test_df_munged)[np.newaxis, :].T)
        ,axis=1)
y_final = regr.predict(test_x)
y_final
array([ 11.83896506,  11.95544055,  12.08303061, ...,  12.02530217,
        11.71776755,  12.16714229])
submission_df = pd.DataFrame(data= {'Id' : test_df.Id, 'SalePrice': np.exp(y_final)})
submission_df.to_csv("bag-4.csv",index=False) # 取消index的存儲(chǔ)

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市凡蜻,隨后出現(xiàn)的幾起案子厘灼,更是在濱河造成了極大的恐慌夹纫,老刑警劉巖,帶你破解...
    沈念sama閱讀 221,548評(píng)論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件设凹,死亡現(xiàn)場離奇詭異舰讹,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)闪朱,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,497評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門月匣,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人奋姿,你說我怎么就攤上這事锄开。” “怎么了称诗?”我有些...
    開封第一講書人閱讀 167,990評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵萍悴,是天一觀的道長。 經(jīng)常有香客問我寓免,道長癣诱,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,618評(píng)論 1 296
  • 正文 為了忘掉前任袜香,我火速辦了婚禮撕予,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘蜈首。我一直安慰自己实抡,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,618評(píng)論 6 397
  • 文/花漫 我一把揭開白布欢策。 她就那樣靜靜地躺著吆寨,像睡著了一般。 火紅的嫁衣襯著肌膚如雪踩寇。 梳的紋絲不亂的頭發(fā)上鸟废,一...
    開封第一講書人閱讀 52,246評(píng)論 1 308
  • 那天,我揣著相機(jī)與錄音姑荷,去河邊找鬼盒延。 笑死,一個(gè)胖子當(dāng)著我的面吹牛鼠冕,可吹牛的內(nèi)容都是我干的添寺。 我是一名探鬼主播,決...
    沈念sama閱讀 40,819評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼懈费,長吁一口氣:“原來是場噩夢啊……” “哼计露!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,725評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤票罐,失蹤者是張志新(化名)和其女友劉穎叉趣,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體该押,經(jīng)...
    沈念sama閱讀 46,268評(píng)論 1 320
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡疗杉,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,356評(píng)論 3 340
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了蚕礼。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片烟具。...
    茶點(diǎn)故事閱讀 40,488評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖奠蹬,靈堂內(nèi)的尸體忽然破棺而出朝聋,到底是詐尸還是另有隱情,我是刑警寧澤囤躁,帶...
    沈念sama閱讀 36,181評(píng)論 5 350
  • 正文 年R本政府宣布冀痕,位于F島的核電站,受9級(jí)特大地震影響狸演,放射性物質(zhì)發(fā)生泄漏言蛇。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,862評(píng)論 3 333
  • 文/蒙蒙 一严沥、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧中姜,春花似錦消玄、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,331評(píng)論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至携龟,卻和暖如春兔跌,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背峡蟋。 一陣腳步聲響...
    開封第一講書人閱讀 33,445評(píng)論 1 272
  • 我被黑心中介騙來泰國打工坟桅, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人蕊蝗。 一個(gè)月前我還...
    沈念sama閱讀 48,897評(píng)論 3 376
  • 正文 我出身青樓仅乓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親蓬戚。 傳聞我的和親對(duì)象是個(gè)殘疾皇子夸楣,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,500評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容