monocle2 擬時間分支點(diǎn)分析結(jié)果解讀

How to map cell fate to branches?

擬時間分析結(jié)果有很多重要的結(jié)果,但是這些結(jié)果如何解讀喧枷?比如下圖的分支點(diǎn)分析結(jié)果:


分支點(diǎn)熱圖結(jié)果

從圖中可以看到宛渐,行代表基因,這個好說获搏,熱圖的列主要分為三方面:Pre?branch虑粥、Cell fate 1如孝、Cell fate 2,這三個列代表什么含義娩贷?


Pre?branch

為了解讀結(jié)果第晰,我們看一下擬時間分析分的state結(jié)果圖,然后我們對應(yīng)的Pre?branch包含哪些細(xì)胞彬祖?


擬時間分析state結(jié)果

這里茁瘦,我們想比較state7和state1的差異,也就是想分析branch point 3的分支點(diǎn)(identify genes expressed in a branch-dependent )储笑,那這里Pre?branch到底包含哪些細(xì)胞甜熔?

In fact, BEAM tries to traverse backward from the cell on the branch point all the way back to the root cell (the cell with pseudotime 0) and use all those cells as the the pre-branch.
從結(jié)果說明可以看到,Pre?branch包含的細(xì)胞為 2, 3, 5突倍。


'cell fate 1' and 'cell fate 2'

cell fate 1和cell fate 2到底指什么腔稀?比如還是這里的branch point 3為例:

Cell fate 1 corresponds to the state with small id (in this case, state 1) while cell fate 2 corresponds to sate with bigger id (in this case, state 2)
從說明文檔中可以看出:

  • [x] Cell fate 1:state 1
  • [x] Cell fate 2:state 7

其他場景Pre?branch說明

如果比較state4和state7盆昙,Pre?branch又是哪些細(xì)胞?

this is a very good question since state 4 relates to branch point 2 while state 7 relates to branch point 3. For this test, the pre-branch will only include cells from state 2.
這里的Pre?branch僅僅包含state2細(xì)胞焊虏。

后記

此文僅僅記錄了分支點(diǎn)依賴相關(guān)基因的解讀淡喜,其他的解讀后續(xù)在說明。

plot_multiple_branches_pseudotime函數(shù)說明

plot_multiple_branches_pseudotime:Create a kinetic curves to demonstrate the bifurcation of gene expression along multiple branches诵闭。
此函數(shù)可以進(jìn)行多個分支點(diǎn)進(jìn)行比較分析炼团。

plot_multiple_branches_pseudotime(cds, branches, branches_name = NULL,min_expr = NULL, cell_size = 0.75, norm_method = c("vstExprs", "log"),nrow = NULL, ncol = 1, panel_order = NULL, color_by = "Branch",
trend_formula = "~sm.ns(Pseudotime, df=3)", label_by_short_name = TRUE,TPM = FALSE, cores = 1)
#示范命令
plot_multiple_branches_heatmap(celltrajectory.monocle, branches = c(6,7),
cluster_rows = TRUE, hclust_method = "ward.D2", num_clusters = 6,
hmcols = NULL, add_annotation_row = NULL, add_annotation_col = NULL,
show_rownames = FALSE, use_gene_short_name = TRUE,
norm_method = c("vstExprs", "log"), scale_max = 3, scale_min = -3,
trend_formula = "~sm.ns(Pseudotime, df=3)", return_heatmap = FALSE,
cores = 1)

熱圖的每一列代表什么?

If you're looking for a deeper understanding of what the function is doing, I'd recommend digging into the source code for the function. The plot_genes_branched_heatmap function is in R/plotting.R, but it calls a nested function (buildBranchCellDataSet) that's contained in R/BEAM.R. I found it valuable to run through the code line by line and see what variables get made/changed.

But to briefly answer your question, monocle orders your cells along the trajectory, giving each cell a pseudotime value. Now, with expression values for each gene at different points in pseudotime (ie. each cell), it uses a VGLM with splines to fit non-linear expression dynamics as a function of pseudotime. This model can then directly be used for differential expression if desired (eg. using a likelihood ratio test against a reduced model that doesn't incorporate pseudotime). For plotting a heatmap though, there's a problem: the pseudotime values for your cells do not increase by sequential integers (ie. 1,2,3,..,n). This is because monocle was designed, recognizing that the jump between cells along a trajectory aren't always the same distance. So if you were to make a heatmap, your column representation of pseudotime wouldn't be linear--it will depend on your sampling density along the trajectory. It could go, for example, 1,1.15,1.25,5,6,6.25,10 (see the problem?). So what the plotting function does (more specifically, a function called genSmoothCurves) is use the constructed models from before to predict gene expression of all genes along 100 evenly spaced pseudotime values spanning the range, and then makes a heatmap of those predictions rather than your scRNA-Seq measurements themselves. Each column represents those one of those 100 pseudotime values.

The branched heatmap function is similar, except things are ordered differently. Those modelled values are ordered from the middle of the heatmap outwards. The left and right directions represent the modelled expression for two separate branches of the trajectory. The small region in the middle that is symmetrical represents the "progenitors" (the nomenclature used by the devs) prior to the branchpoint, and the point moving outwards where that symmetry breaks is the bifurcation point of the two independent branches. Going through the source code for this would really help make this clear.

簡而言之涂圆,就是根據(jù)的擬時間值的范圍们镜,分成100個bin,每個bin中代表一個擬時間值润歉。

參考資料

官方說明:How to map cell fate to branches?
plot_multiple_branches_pseudotime源代碼
Understanding plot_genes_branched_heatmap columns

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末模狭,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子踩衩,更是在濱河造成了極大的恐慌嚼鹉,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,013評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件驱富,死亡現(xiàn)場離奇詭異锚赤,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)褐鸥,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評論 2 382
  • 文/潘曉璐 我一進(jìn)店門线脚,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人叫榕,你說我怎么就攤上這事浑侥。” “怎么了晰绎?”我有些...
    開封第一講書人閱讀 152,370評論 0 342
  • 文/不壞的土叔 我叫張陵寓落,是天一觀的道長。 經(jīng)常有香客問我荞下,道長伶选,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,168評論 1 278
  • 正文 為了忘掉前任尖昏,我火速辦了婚禮仰税,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘抽诉。我一直安慰自己肖卧,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評論 5 371
  • 文/花漫 我一把揭開白布掸鹅。 她就那樣靜靜地躺著塞帐,像睡著了一般。 火紅的嫁衣襯著肌膚如雪巍沙。 梳的紋絲不亂的頭發(fā)上葵姥,一...
    開封第一講書人閱讀 48,954評論 1 283
  • 那天,我揣著相機(jī)與錄音句携,去河邊找鬼榔幸。 笑死,一個胖子當(dāng)著我的面吹牛矮嫉,可吹牛的內(nèi)容都是我干的削咆。 我是一名探鬼主播,決...
    沈念sama閱讀 38,271評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼蠢笋,長吁一口氣:“原來是場噩夢啊……” “哼拨齐!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起昨寞,我...
    開封第一講書人閱讀 36,916評論 0 259
  • 序言:老撾萬榮一對情侶失蹤瞻惋,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后援岩,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體歼狼,經(jīng)...
    沈念sama閱讀 43,382評論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評論 2 323
  • 正文 我和宋清朗相戀三年享怀,在試婚紗的時候發(fā)現(xiàn)自己被綠了羽峰。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 37,989評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡添瓷,死狀恐怖梅屉,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情仰坦,我是刑警寧澤履植,帶...
    沈念sama閱讀 33,624評論 4 322
  • 正文 年R本政府宣布,位于F島的核電站悄晃,受9級特大地震影響玫霎,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜妈橄,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評論 3 307
  • 文/蒙蒙 一庶近、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧眷蚓,春花似錦鼻种、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽罢缸。三九已至,卻和暖如春投队,著一層夾襖步出監(jiān)牢的瞬間枫疆,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評論 1 260
  • 我被黑心中介騙來泰國打工敷鸦, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留息楔,地道東北人。 一個月前我還...
    沈念sama閱讀 45,401評論 2 352
  • 正文 我出身青樓扒披,卻偏偏與公主長得像值依,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子碟案,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評論 2 345

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,292評論 0 10
  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,389評論 0 23
  • Chapter 1 In the year 1878, I took my degree of Doctor of...
    foxgti閱讀 3,644評論 0 6
  • 我終于說服自己鼓起勇氣與孩子爸爸一起去見了班主任老師愿险。因為兒子的成績所以我們一直羞與去見老師,一來怕被認(rèn)為家長管不...
    馮梅fm閱讀 260評論 0 4
  • 辛苦楚然蟆淀,這么遠(yuǎn)拯啦,在發(fā)燒的情況下,還大老遠(yuǎn)趕到武漢來限給了我們武漢同學(xué)一個機(jī)會熔任,讓大家又有可以找個機(jī)會聚在一起褒链,真...
    天文向上閱讀 229評論 1 3