FDDB-FAQ

FDDB-FAQ

翻譯:趙明明

人臉檢測(cè)數(shù)據(jù)集基準(zhǔn)

常見(jiàn)問(wèn)題

Q1. How do you compute the detection score that is to be included in the face detection output file?

The score included in the output file of a face detection system should be obtained by the system itself. The evaluation code included in the benchmark varies the threshold on this score to obtain different points on the desired ROC curve.?

問(wèn)題1. 人臉檢測(cè)輸出文件中的檢測(cè)得分是怎樣計(jì)算的?

這個(gè)得分應(yīng)該是你的檢測(cè)系統(tǒng)自己給出來(lái).我們的評(píng)價(jià)代碼根據(jù)這些得分來(lái)設(shè)置閾值從而得到ROC曲線.?

Q2. What range should the detection score be?

The range of scores can lie anywhere on the real line (-infinity to infinity)[-inf,inf], In other words, the scores are used to order the detections, and their absolute values do not matter.?

問(wèn)題2. 檢測(cè)得分的取值范圍是多少?

得分的取值范圍不受限制熬粗,也就是說(shuō)得分范圍在[-inf,inf]妒挎。得分主要是用來(lái)排序用的踩萎,所以它們的取值不重要.?

Q3. If only one detected region (output of face detector) is intersected with many labeled regions in the ground truth. What is the detection score in this case?

For a given image, we first find the best one-one matching between the detections and annotations (Section 6.1). For each of the resulting matching pairs, we compute two different scores based on the overlap ratio (Equation 2).The details of our evaluation is included in Section 6 of the?FDDB technical report.?

問(wèn)題3. 如果我只檢測(cè)一個(gè)區(qū)域,這個(gè)區(qū)域?qū)?yīng)了多個(gè)標(biāo)注的區(qū)域秫舌,這中情況的得分該怎樣計(jì)算?

我們首先選擇最好的一一配對(duì)的檢測(cè)和標(biāo)注(Section 6.1). 對(duì)于每對(duì)結(jié)果子巾,計(jì)算兩種分?jǐn)?shù)(Equation 2). 具體信息在第6節(jié)的?FDDB technical report.?

Q4. I see a few images in which not all faces are annotated (even if they are very well visible).

Some of the faces present in the images in this collection are not included in the benchmark for a variety of reasons. For instance, all of the face regions with height or width less than 20 pixels are NOT included in the benchmark. The details of the criteria used for accepting face annotations are included in Section 5 of the?FDDB technical report.?

問(wèn)題4.我看到一些圖片中的有些人臉沒(méi)有倍標(biāo)記出來(lái),有些甚至是比較明顯荞膘,而且很好認(rèn)的.

圖片中的有些人臉沒(méi)有被標(biāo)記出來(lái),原因各種各樣.比如下硕,寬度或者高度少于20像素的人臉就不會(huì)被標(biāo)記出來(lái)丁逝。關(guān)于標(biāo)注方面的更多細(xì)節(jié)描述在第5節(jié)中的?FDDB technical report.?

Q5. How do I report a single ROC from the ROCs of 10 folds?

Running the evaluation code for each fold will produce 10 ROC curves, one for each fold. However, the standard way for generating ROCs adopted by users on FDDB is to generate the ROC curve over all the images in the 10 folds at once.?

[Thanks to Adrian Barbu and Frank Wu for helping to clarify this.]?

問(wèn)題5.我怎么從10個(gè)文件夾的ROC中找出一個(gè)發(fā)布出來(lái)?

為每個(gè)文件夾運(yùn)行評(píng)價(jià)代碼梭姓,將產(chǎn)生10個(gè)ROC曲線霜幼,每個(gè)文件夾一個(gè). 然而,標(biāo)準(zhǔn)方法是一次性的將所有10個(gè)文件夾的ROC求出來(lái).?

[謝謝 Adrian Barbu 和 Frank Wu 在這個(gè)問(wèn)題上的幫助.]?

Q6. Where can I get the ROC (text) files for plotting the performance curves shown on the results page?

The ROC files (both for the discrete and continuous scores) are available on the results page in the "Methods" section on the?Results?page.?

問(wèn)題6. 在結(jié)果頁(yè)面中顯示的原始數(shù)據(jù)文件誉尖,我該從那里獲取到罪既?

結(jié)果頁(yè)面中,ROC文件(包含離散和連續(xù)分?jǐn)?shù))可以在 "Methods" 節(jié)下載到.?

Q7. How do you compute the detection score for OpenCV Viola-Jones detector?

In the OpenCV implementation, stage_sum is computed and compared against the i stage_threshold for each stage to accept/reject a candidate window. We define the detection score for a candidate window as?

K*stage_when_rejected + stage_sum_for_stage_when_rejected.?

If a window is accepted by the cascade, we just?

K*last_stage + stage_sum_for_last_stage.?

Choosing K as a large value e.g., 1000, we ensure that windows rejected at stage i have higher score than those rejected at stage i-1.?

問(wèn)題7. 你怎么計(jì)算某些檢測(cè)器的分?jǐn)?shù)铡恕?比如像opencv 的那種Viola-Jones 的檢測(cè)器琢感?

In the OpenCV implementation在opencv的實(shí)現(xiàn)中, stage_sum 如果高于 此階段的閾值,當(dāng)前窗口就會(huì)被接受為一個(gè)候選窗. 所以我們定義候選窗的分?jǐn)?shù)為:

? ? ? ? ? ? ? K*stage_when_rejected + stage_sum_for_stage_when_rejected.?

如果窗口被接受了探熔,則分?jǐn)?shù)為:

? ? ? ? ? ? ? K*last_stage + stage_sum_for_last_stage.?

設(shè)置K為一個(gè)比較大的值驹针,比如這里設(shè)置為 1000, 可以保證在后一階段被拒絕的窗口得分比前一階段高.?

Q8. I use 0/1 confidence scores for the face detections. The evaluation code only gave me two points on the ROC curve. Did I do something wrong?

The ROC curve is computed by varying the threshold over the confidence score. When you have {0,1} confidence score, there are only two points on the ROC curve. If you want a more detailed ROC curve, you would have to provide this confidence score as a real valued score.?

問(wèn)題8. 我用0,1作為人臉檢測(cè)的置信度分?jǐn)?shù)祭刚。評(píng)價(jià)代碼只給了我兩個(gè)ROC點(diǎn)牌捷。我錯(cuò)了么?我該怎么辦涡驮?

TheROC的計(jì)算需要這個(gè)分手有很多的取值暗甥。當(dāng)你只有0,1時(shí)捉捅,ROC上就只有兩個(gè)點(diǎn)了撤防,如果你像有更多的點(diǎn),你的分?jǐn)?shù)取值就要更加真實(shí)棒口,取值要多樣化寄月。?

Q9. The 'evaluation.tgz' program doesn't work with my version of OpenCV. How to generate ROC curves from my detections?

The later versions of OpenCV might be causing some linking errors, especially if pkgconfig is not properly configured on your system. The following modification to the Makefile has been reported to work:

Manually provide the inputs to include files and libraries.

INCS = -I/usr/local/include/opencv

LIBS = -L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui

? ? ? -lopencv_ml -lopencv_video -lopencv_features2d -lopencv_calib3d

? ? ? -lopencv_objdetect -lopencv_contrib -lopencv_legacy

Change the order in the evaluate.?

evaluate: $(OBJS)

? ? $(CC) $(OBJS) -o $@ $(LIBS)


[Thanks to Lourdes Ramírez Cerna for pointing this out.]

問(wèn)題9. 你們提供的代碼 'evaluation.tgz' 跟我的OPENCV在一起不能用. 怎么給我的檢測(cè)工作建立ROC呢?

最新版本的opencv可能會(huì)產(chǎn)生一些鏈接錯(cuò)誤, 尤其當(dāng)pkgconfig在你的系統(tǒng)上沒(méi)有被配置的時(shí)候. 依照下面來(lái)修改Makefile就會(huì)解決問(wèn)題了:

手工提供輸入來(lái)包含相關(guān)文件和庫(kù)文件.

INCS = -I/usr/local/include/opencv

LIBS = -L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui

? ? ? -lopencv_ml -lopencv_video -lopencv_features2d -lopencv_calib3d

? ? ? -lopencv_objdetect -lopencv_contrib -lopencv_legacy

在evaluate中改變順序.?

evaluate: $(OBJS)

? ? $(CC) $(OBJS) -o $@ $(LIBS)


[感謝 Lourdes Ramírez Cerna 幫忙解決此問(wèn)題.]

Q10. Building the evaluation package for OpenCV 3.2 causes errors.

Removing lopencv_contrib and lopencv_legacy from the Makefile LIBS variable, and adding lopencv_imgcodecs causes this to be resolved.?

[Thanks to Yoel Shapiro for pointing this out.]

問(wèn)題10. 在OpenCV 3.2上編譯evaluation包時(shí),產(chǎn)生了錯(cuò)誤.

從Makefile 的LIBS變量中移除 lopencv_contrib and lopencv_legacy无牵,然后添加lopencv_imgcodecs 就會(huì)解決問(wèn)題.?

[感謝 Yoel Shapiro 幫忙解決此問(wèn)題.]

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末漾肮,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子茎毁,更是在濱河造成了極大的恐慌克懊,老刑警劉巖忱辅,帶你破解...
    沈念sama閱讀 217,542評(píng)論 6 504
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異谭溉,居然都是意外死亡墙懂,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,822評(píng)論 3 394
  • 文/潘曉璐 我一進(jìn)店門扮念,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)损搬,“玉大人,你說(shuō)我怎么就攤上這事柜与∏汕冢” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,912評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵弄匕,是天一觀的道長(zhǎng)踢关。 經(jīng)常有香客問(wèn)我,道長(zhǎng)粘茄,這世上最難降的妖魔是什么签舞? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,449評(píng)論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮柒瓣,結(jié)果婚禮上儒搭,老公的妹妹穿的比我還像新娘。我一直安慰自己芙贫,他們只是感情好搂鲫,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,500評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著磺平,像睡著了一般魂仍。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上拣挪,一...
    開(kāi)封第一講書(shū)人閱讀 51,370評(píng)論 1 302
  • 那天擦酌,我揣著相機(jī)與錄音,去河邊找鬼菠劝。 笑死赊舶,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的赶诊。 我是一名探鬼主播笼平,決...
    沈念sama閱讀 40,193評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼舔痪!你這毒婦竟也來(lái)了寓调?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 39,074評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤锄码,失蹤者是張志新(化名)和其女友劉穎夺英,沒(méi)想到半個(gè)月后鸠珠,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,505評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡秋麸,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,722評(píng)論 3 335
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了炬太。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片灸蟆。...
    茶點(diǎn)故事閱讀 39,841評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖亲族,靈堂內(nèi)的尸體忽然破棺而出炒考,到底是詐尸還是另有隱情,我是刑警寧澤霎迫,帶...
    沈念sama閱讀 35,569評(píng)論 5 345
  • 正文 年R本政府宣布斋枢,位于F島的核電站,受9級(jí)特大地震影響知给,放射性物質(zhì)發(fā)生泄漏瓤帚。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,168評(píng)論 3 328
  • 文/蒙蒙 一涩赢、第九天 我趴在偏房一處隱蔽的房頂上張望戈次。 院中可真熱鬧,春花似錦筒扒、人聲如沸怯邪。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,783評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)悬秉。三九已至,卻和暖如春冰蘑,著一層夾襖步出監(jiān)牢的瞬間和泌,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,918評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工祠肥, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留允跑,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 47,962評(píng)論 2 370
  • 正文 我出身青樓搪柑,卻偏偏與公主長(zhǎng)得像聋丝,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子工碾,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,781評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • 獨(dú)處秋色 何處話寂寥 凡人處世間 世人多八卦 然己怎欲語(yǔ) 閉口失禮節(jié) 三問(wèn)一答 最中庸
    國(guó)進(jìn)菌業(yè)閱讀 185評(píng)論 0 0
  • 我只是天空中的一朵云 有時(shí)會(huì)與其他的云聚在一起 有時(shí)卻只能獨(dú)自在天空漫無(wú)目的地飄 天空這么大 哪里才是我得容身之地...
    輕以閱讀 279評(píng)論 6 3
  • 應(yīng)用服務(wù)器應(yīng)該設(shè)計(jì)成無(wú)狀態(tài)的弱睦,也就是說(shuō)應(yīng)用服務(wù)器不存儲(chǔ)請(qǐng)求上下文信息,如果將部署有相同的應(yīng)用服務(wù)器組成一個(gè)集群渊额,每...
    杰哥長(zhǎng)得帥閱讀 487評(píng)論 0 4
  • 職場(chǎng)經(jīng)驗(yàn)包括溝通况木、文化垒拢、團(tuán)隊(duì)建設(shè)、決策火惊、創(chuàng)新和謙卑等六方面內(nèi)容求类。本文總結(jié)出42條“職場(chǎng)生存軍規(guī)”,來(lái)自世界上最優(yōu)秀...
    夜貓子譚娟閱讀 447評(píng)論 0 0