Biostar學習筆記(3)Gene set analysis related topics.

1. What is an Over-Representation Analysis (ORA)?

ORA tries to find representative functions of a list of genes by comparing the number of times a function is observed to a baseline. Gene expression level or score were not used.

2. What are problems of the ORA analysis?

The shortcomings of the overlap analysis are that:

  • ORA analysis does not account for the magnitude of expression levels. The gene is either in the list or not.
  • ORA typically uses only a subset of genes - the cutoffs are "arbitrary" in the sense that they are based on convention rather than an objective measure.
  • Genes and functions are all considered independent of one another. For statistical assumptions to work, this is an essential requirement. If the independence constraint does not hold then the mathematical basis for the test does not hold either. As we all know many functions in the cell are strongly interdependent.
  • TAKE HOME MESSAGE: ORA analysis is more suitable for hypothesis generation than providing final answer to a problem.

Further reading: Khatri et al. "Ten years of pathway analysis: current approaches and outstanding challenges." (2012)
This review was written in 2012 so it does not contain the most up-to-date information on "pathway" analyses. But it is a good introductory material to get to learn more about the differences between different functional "pathway" analyses.

image

Ref: Khatri et al. "Ten years of pathway analysis: current approaches and outstanding challenges." (2012)

ermineJ (ORA, GSR, CORR) Gene set analysis tool.

ermineJ
Install ermineJ on 64 bit windows. Double-click the short-cut on desktop to start ermineJ.

Gene Set Enrichment Analysis (GSEA)

GSEA software
You will have to register to get the download link.
Turorials are also available. You can follow the tutorials to run sample data.
If you want to use your own data to run GSEA, you can follow User Guide to prepare your data. If you feel it's hard to learn, you can refer to ==Jimmy's post:=="用GSEA來做基因集富集分析" on how to run GSEA. The most import part is to prepare your data as instructed in User Guide.

clusterProfiler (ORA, GSEA analyses)

Insatllation:

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
## biocLite("BiocUpgrade") ## you may need this
biocLite("clusterProfiler")

Well, this is the most well-documented software by it's owner.
Please refer to the following posts to learn how to use clusterProfiler.

1. clusterProfiler: statistical analysis and visualization of functional profiles for genes and gene clusters

2. clusterProfiler.Rmd on Github

3. 聽說你有RNAseq數(shù)據(jù)卻不知道怎么跑GSEA
How to prepare geneList for clusterProfiler:
If there's duplicates in your row names, you can consider using "aggregate" function to combine them and the values can be max, mean, median or min, whichever you prefer to use.

Original data: first col is gene ID (Entrez ID, but also can be other types of IDs cause you can transfer them by using bitr() function), the second column should be gene expression value or any other kind of numeric value.

d = read.csv(your_csv_file)
## assume 1st column is ID
## 2nd column is FC

## feature 1: numeric vector
geneList = d[,2]

## feature 2: named vector
names(geneList) = as.character(d[,1])

## feature 3: decreasing order
geneList = sort(geneList, decreasing = TRUE)
# Ref:https://mp.weixin.qq.com/s/aht5fQ10nH_07CYttKFH7Q

Once geneList is generated, you can use R code provided in the clusterProfiler User Manual.

Please be advised that different gene set analysis software may use different annotation files, which may greatly affect your results. Please refer to the following posts to learn more.

4. 你昨天才做的分析,可能是幾年前的結果!

5. 富集分析,倆人做的結果差5歲 | 你用的注釋文件有多老?

Other topics:

  1. Recommend this review: Rhee, Seung Yon, et al. "Use and misuse of the gene ontology annotations." Nature Reviews Genetics 9.7 (2008): 509-515.

  2. How to access Windows folders in bash Ubuntu?

C is mounted in bash Ubuntu as /mnt/c/
D is mounted in bahs Ubuntu as /mnt/d/

  1. How to reset you bashrc file?
    Type the following in your terminal,
/bin/cp /etc/skel/.bashrc ~/

It will replace your corrupt ~/.bashrc with a fresh one. After that you need to source the ~/.bashrc so that the change take place immediately, write in terminal,

source ~/.bashrc
最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末钝的,一起剝皮案震驚了整個濱河市允跑,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌紊馏,老刑警劉巖牺弄,帶你破解...
    沈念sama閱讀 211,348評論 6 491
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件姻几,死亡現(xiàn)場離奇詭異,居然都是意外死亡势告,警方通過查閱死者的電腦和手機蛇捌,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,122評論 2 385
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來咱台,“玉大人络拌,你說我怎么就攤上這事〕郴ぃ” “怎么了盒音?”我有些...
    開封第一講書人閱讀 156,936評論 0 347
  • 文/不壞的土叔 我叫張陵,是天一觀的道長馅而。 經(jīng)常有香客問我,道長譬圣,這世上最難降的妖魔是什么瓮恭? 我笑而不...
    開封第一講書人閱讀 56,427評論 1 283
  • 正文 為了忘掉前任,我火速辦了婚禮厘熟,結果婚禮上屯蹦,老公的妹妹穿的比我還像新娘。我一直安慰自己绳姨,他們只是感情好登澜,可當我...
    茶點故事閱讀 65,467評論 6 385
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著飘庄,像睡著了一般脑蠕。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,785評論 1 290
  • 那天谴仙,我揣著相機與錄音迂求,去河邊找鬼。 笑死晃跺,一個胖子當著我的面吹牛揩局,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播掀虎,決...
    沈念sama閱讀 38,931評論 3 406
  • 文/蒼蘭香墨 我猛地睜開眼凌盯,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了烹玉?” 一聲冷哼從身側響起十气,我...
    開封第一講書人閱讀 37,696評論 0 266
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎春霍,沒想到半個月后砸西,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,141評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡址儒,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,483評論 2 327
  • 正文 我和宋清朗相戀三年芹枷,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片莲趣。...
    茶點故事閱讀 38,625評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡鸳慈,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出喧伞,到底是詐尸還是另有隱情走芋,我是刑警寧澤,帶...
    沈念sama閱讀 34,291評論 4 329
  • 正文 年R本政府宣布潘鲫,位于F島的核電站翁逞,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏溉仑。R本人自食惡果不足惜挖函,卻給世界環(huán)境...
    茶點故事閱讀 39,892評論 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望浊竟。 院中可真熱鬧怨喘,春花似錦、人聲如沸振定。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,741評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽后频。三九已至梳庆,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背靠益。 一陣腳步聲響...
    開封第一講書人閱讀 31,977評論 1 265
  • 我被黑心中介騙來泰國打工丧肴, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人胧后。 一個月前我還...
    沈念sama閱讀 46,324評論 2 360
  • 正文 我出身青樓芋浮,卻偏偏與公主長得像,于是被迫代替她去往敵國和親壳快。 傳聞我的和親對象是個殘疾皇子纸巷,可洞房花燭夜當晚...
    茶點故事閱讀 43,492評論 2 348

推薦閱讀更多精彩內(nèi)容