在開(kāi)發(fā)中遇到網(wǎng)絡(luò)請(qǐng)求時(shí)需要對(duì)密碼進(jìn)行加密處理的需求,在網(wǎng)上花一定的功夫研究整理了sha1和sha256進(jìn)行加密的文件,分享出來(lái)給有需要的人用順便記錄一下ionic中使用js文件的方法
sha1加密:
/**//*
* Configurable variables.
*/
var hexcase = 0; /**//* hex output format. 0 - lowercase; 1 - uppercase */
var chrsz = 8; /**//* bits per input character. 8 - ASCII; 16 - Unicode */
/**//*
* 調(diào)用此方法可以轉(zhuǎn)化為sha1值
*/
export function toSha1(s)
{
return binb2hex(core_sha1(AlignSHA1(s)));
}
/**//*
* Perform a simple self-test to see if the VM is working
*/
function sha1_vm_test()
{
return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
/**//*
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
function core_sha1(blockArray)
{
var x = blockArray; //append padding
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16) //每次處理512位 16*32
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++) //對(duì)每個(gè)512位進(jìn)行80步操作
{
if(j < 16) w[j] = x[i + j];
else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return new Array(a, b, c, d, e);
}
/**//*
* Perform the appropriate triplet combination function for the current iteration
* 返回對(duì)應(yīng)F函數(shù)的值
*/
function sha1_ft(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d; //t<80
}
/**//*
* Determine the appropriate additive constant for the current iteration
* 返回對(duì)應(yīng)的Kt值
*/
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
/**//*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
* 將32位數(shù)拆成高16位和低16位分別進(jìn)行相加牵素,從而實(shí)現(xiàn) MOD 2^32 的加法
*/
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/**//*
* Bitwise rotate a 32-bit number to the left.
* 32位二進(jìn)制數(shù)循環(huán)左移
*/
function rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
/**//*
* The standard SHA1 needs the input string to fit into a block
* This function align the input string to meet the requirement
*/
function AlignSHA1(str){
var nblk=((str.length+8)>>6)+1, blks=new Array(nblk*16);
for(var i=0;i<nblk*16;i++)blks[i]=0;
for(i=0;i<str.length;i++)
blks[i>>2]|=str.charCodeAt(i)<<(24-(i&3)*8);
blks[i>>2]|=0x80<<(24-(i&3)*8);
blks[nblk*16-1]=str.length*8;
return blks;
}
/**//*
* Convert an array of big-endian words to a hex string.
*/
function binb2hex(binarray)
{
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var str = "";
for(var i = 0; i < binarray.length * 4; i++)
{
str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) +
hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF);
}
return str;
}
sha256加密:
/* 把data轉(zhuǎn)化為sha256的方法入口 */
export function toSha256(data) {
sha256_init();
sha256_update(data, data.length);
sha256_final();
return sha256_encode_hex();
}
/* SHA256 logical functions */
function rotateRight(n,x) {
return ((x >>> n) | (x << (32 - n)));
}
function choice(x,y,z) {
return ((x & y) ^ (~x & z));
}
function majority(x,y,z) {
return ((x & y) ^ (x & z) ^ (y & z));
}
function sha256_Sigma0(x) {
return (rotateRight(2, x) ^ rotateRight(13, x) ^ rotateRight(22, x));
}
function sha256_Sigma1(x) {
return (rotateRight(6, x) ^ rotateRight(11, x) ^ rotateRight(25, x));
}
function sha256_sigma0(x) {
return (rotateRight(7, x) ^ rotateRight(18, x) ^ (x >>> 3));
}
function sha256_sigma1(x) {
return (rotateRight(17, x) ^ rotateRight(19, x) ^ (x >>> 10));
}
function sha256_expand(W, j) {
return (W[j&0x0f] += sha256_sigma1(W[(j+14)&0x0f]) + W[(j+9)&0x0f] +
sha256_sigma0(W[(j+1)&0x0f]));
}
/* Hash constant words K: */
var K256 = new Array(
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
);
/* global arrays */
var ihash, count, buffer;
var sha256_hex_digits = "0123456789abcdef";
/* Add 32-bit integers with 16-bit operations (bug in some JS-interpreters:
overflow) */
function safe_add(x, y)
{
var lsw = (x & 0xffff) + (y & 0xffff);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xffff);
}
/* Initialise the SHA256 computation */
function sha256_init() {
ihash = new Array(8);
count = new Array(2);
buffer = new Array(64);
count[0] = count[1] = 0;
ihash[0] = 0x6a09e667;
ihash[1] = 0xbb67ae85;
ihash[2] = 0x3c6ef372;
ihash[3] = 0xa54ff53a;
ihash[4] = 0x510e527f;
ihash[5] = 0x9b05688c;
ihash[6] = 0x1f83d9ab;
ihash[7] = 0x5be0cd19;
}
/* Transform a 512-bit message block */
function sha256_transform() {
var a, b, c, d, e, f, g, h, T1, T2;
var W = new Array(16);
/* Initialize registers with the previous intermediate value */
a = ihash[0];
b = ihash[1];
c = ihash[2];
d = ihash[3];
e = ihash[4];
f = ihash[5];
g = ihash[6];
h = ihash[7];
/* make 32-bit words */
for(var i=0; i<16; i++)
W[i] = ((buffer[(i<<2)+3]) | (buffer[(i<<2)+2] << 8) | (buffer[(i<<2)+1]
<< 16) | (buffer[i<<2] << 24));
for(var j=0; j<64; j++) {
T1 = h + sha256_Sigma1(e) + choice(e, f, g) + K256[j];
if(j < 16) T1 += W[j];
else T1 += sha256_expand(W, j);
T2 = sha256_Sigma0(a) + majority(a, b, c);
h = g;
g = f;
f = e;
e = safe_add(d, T1);
d = c;
c = b;
b = a;
a = safe_add(T1, T2);
}
/* Compute the current intermediate hash value */
ihash[0] += a;
ihash[1] += b;
ihash[2] += c;
ihash[3] += d;
ihash[4] += e;
ihash[5] += f;
ihash[6] += g;
ihash[7] += h;
}
/* Read the next chunk of data and update the SHA256 computation */
function sha256_update(data, inputLen) {
var i, index, curpos = 0;
/* Compute number of bytes mod 64 */
index = ((count[0] >> 3) & 0x3f);
var remainder = (inputLen & 0x3f);
/* Update number of bits */
if ((count[0] += (inputLen << 3)) < (inputLen << 3)) count[1]++;
count[1] += (inputLen >> 29);
/* Transform as many times as possible */
for(i=0; i+63<inputLen; i+=64) {
for(var j=index; j<64; j++)
buffer[j] = data.charCodeAt(curpos++);
sha256_transform();
index = 0;
}
/* Buffer remaining input */
for(let j=0; j<remainder; j++)
buffer[j] = data.charCodeAt(curpos++);
}
/* Finish the computation by operations such as padding */
function sha256_final() {
var index = ((count[0] >> 3) & 0x3f);
buffer[index++] = 0x80;
if(index <= 56) {
for(var i=index; i<56; i++)
buffer[i] = 0;
} else {
for(var i=index; i<64; i++)
buffer[i] = 0;
sha256_transform();
for(var i=0; i<56; i++)
buffer[i] = 0;
}
buffer[56] = (count[1] >>> 24) & 0xff;
buffer[57] = (count[1] >>> 16) & 0xff;
buffer[58] = (count[1] >>> 8) & 0xff;
buffer[59] = count[1] & 0xff;
buffer[60] = (count[0] >>> 24) & 0xff;
buffer[61] = (count[0] >>> 16) & 0xff;
buffer[62] = (count[0] >>> 8) & 0xff;
buffer[63] = count[0] & 0xff;
sha256_transform();
}
/* Split the internal hash values into an array of bytes */
function sha256_encode_bytes() {
var j=0;
var output = new Array(32);
for(var i=0; i<8; i++) {
output[j++] = ((ihash[i] >>> 24) & 0xff);
output[j++] = ((ihash[i] >>> 16) & 0xff);
output[j++] = ((ihash[i] >>> 8) & 0xff);
output[j++] = (ihash[i] & 0xff);
}
return output;
}
/* Get the internal hash as a hex string */
function sha256_encode_hex() {
var output = new String();
for(var i=0; i<8; i++) {
for(var j=28; j>=0; j-=4)
output += sha256_hex_digits.charAt((ihash[i] >>> j) & 0x0f);
}
return output;
}
具體使用方法有兩種:
-
把上述兩個(gè)js文件放在項(xiàng)目中,然后新建兩個(gè)對(duì)應(yīng)名稱的d.ts文件,聲明兩個(gè)入口文件之后在需要的地方調(diào)用即可
例子:
在sha1.js同一文件夾下新建sha1.d.ts文件
內(nèi)容:
export declare function toSha1
然后在需要使用的地方調(diào)用
import { toSha1} from "../sha1";val result=toSha1("zxc)//轉(zhuǎn)化zxc
sha256同理
直接把上面的內(nèi)容copy到一個(gè)ts文件中使用
import { toSha1,toSha256 } from "../sha";
val result=toSha1("zxc)//轉(zhuǎn)化zxc-sha1
val result=toSha256("zxc)//轉(zhuǎn)化zxc-sha256
在通過(guò)d.ts文件聲明js文件中的方法時(shí),遇到Object(...) is not a function說(shuō)明聲明失敗了,失敗的原因可能有兩種:
- 文件名錯(cuò)誤,文件名一定要和js文件相同 ,且是d.ts而不是ts,之前我就由于馬虎沒(méi)有注意到這個(gè)問(wèn)題導(dǎo)致浪費(fèi)了不少時(shí)間
- js文件中的方法沒(méi)有export,沒(méi)有export的方法時(shí)不能通過(guò)這種方法來(lái)聲明并調(diào)用的,如果想通過(guò)ts文件聲明的方式來(lái)調(diào)用,必須將js中的方法加上前綴export
最后放上下載鏈接,希望可以幫助到需要的人
[sha]: https://github.com/AdamZero/js-sha.git