??主成分分析斥难,即Principal Component Analysis(PCA)枝嘶,是多元統(tǒng)計中的重要內(nèi)容,也廣泛應用于機器學習和其它領域哑诊。它的主要作用是對高維數(shù)據(jù)進行降維群扶。PCA把原先的n個特征用數(shù)目更少的k個特征取代,新特征是舊特征的線性組合镀裤,這些線性組合最大化樣本方差竞阐,盡量使新的k個特征互不相關(guān)。關(guān)于PCA的更多介紹暑劝,請參考:https://en.wikipedia.org/wiki/Principal_component_analysis.
??PCA的主要算法如下:
- 組織數(shù)據(jù)形式骆莹,以便于模型使用;
- 計算樣本每個特征的平均值担猛;
- 每個樣本數(shù)據(jù)減去該特征的平均值(歸一化處理)幕垦;
- 求協(xié)方差矩陣;
- 找到協(xié)方差矩陣的特征值和特征向量毁习;
- 對特征值和特征向量重新排列(特征值從大到小排列)智嚷;
- 對特征值求取累計貢獻率;
- 對累計貢獻率按照某個特定比例纺且,選取特征向量集的字跡合盏道;
- 對原始數(shù)據(jù)(第三步后)告抄。
??其中協(xié)方差矩陣的分解可以通過按對稱矩陣的特征向量來仅淑,也可以通過分解矩陣的SVD來實現(xiàn)包斑,而在Scikit-learn中逼侦,也是采用SVD來實現(xiàn)PCA算法的靖避。關(guān)于SVD的介紹及其原理绽左,可以參考:矩陣的奇異值分解(SVD)(理論)屯断。
??本文將用三種方法來實現(xiàn)PCA算法昨稼,一種是原始算法步咪,即上面所描述的算法過程论皆,具體的計算方法和過程,可以參考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一種是帶SVD的原始算法,在Python的Numpy模塊中已經(jīng)實現(xiàn)了SVD算法点晴,并且將特征值從大從小排列感凤,省去了對特征值和特征向量重新排列這一步。最后一種方法是用Python的Scikit-learn模塊實現(xiàn)的PCA類直接進行計算粒督,來驗證前面兩種方法的正確性陪竿。
??用以上三種方法來實現(xiàn)PCA的完整的Python如下:
import numpy as np
from sklearn.decomposition import PCA
import sys
#returns choosing how many main factors
def index_lst(lst, component=0, rate=0):
#component: numbers of main factors
#rate: rate of sum(main factors)/sum(all factors)
#rate range suggest: (0.8,1)
#if you choose rate parameter, return index = 0 or less than len(lst)
if component and rate:
print('Component and rate must choose only one!')
sys.exit(0)
if not component and not rate:
print('Invalid parameter for numbers of components!')
sys.exit(0)
elif component:
print('Choosing by component, components are %s......'%component)
return component
else:
print('Choosing by rate, rate is %s ......'%rate)
for i in range(1, len(lst)):
if sum(lst[:i])/sum(lst) >= rate:
return i
return 0
def main():
# test data
mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]]
# simple transform of test data
Mat = np.array(mat, dtype='float64')
print('Before PCA transforMation, data is:\n', Mat)
print('\nMethod 1: PCA by original algorithm:')
p,n = np.shape(Mat) # shape of Mat
t = np.mean(Mat, 0) # mean of each column
# substract the mean of each column
for i in range(p):
for j in range(n):
Mat[i,j] = float(Mat[i,j]-t[j])
# covariance Matrix
cov_Mat = np.dot(Mat.T, Mat)/(p-1)
# PCA by original algorithm
# eigvalues and eigenvectors of covariance Matrix with eigvalues descending
U,V = np.linalg.eigh(cov_Mat)
# Rearrange the eigenvectors and eigenvalues
U = U[::-1]
for i in range(n):
V[i,:] = V[i,:][::-1]
# choose eigenvalue by component or rate, not both of them euqal to 0
Index = index_lst(U, component=2) # choose how many main factors
if Index:
v = V[:,:Index] # subset of Unitary matrix
else: # improper rate choice may return Index=0
print('Invalid rate choice.\nPlease adjust the rate.')
print('Rate distribute follows:')
print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)])
sys.exit(0)
# data transformation
T1 = np.dot(Mat, v)
# print the transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T1)
# PCA by original algorithm using SVD
print('\nMethod 2: PCA by original algorithm using SVD:')
# u: Unitary matrix, eigenvectors in columns
# d: list of the singular values, sorted in descending order
u,d,v = np.linalg.svd(cov_Mat)
Index = index_lst(d, rate=0.95) # choose how many main factors
T2 = np.dot(Mat, u[:,:Index]) # transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T2)
# PCA by Scikit-learn
pca = PCA(n_components=2) # n_components can be integer or float in (0,1)
pca.fit(mat) # fit the model
print('\nMethod 3: PCA by Scikit-learn:')
print('After PCA transformation, data becomes:')
print(pca.fit_transform(mat)) # transformed data
main()
運行以上代碼,輸出結(jié)果為:
??這說明用以上三種方法來實現(xiàn)PCA都是可行的屠橄。這樣我們就能理解PCA的具體實現(xiàn)過程啦~~
??有興趣的讀者可以用其它語言實現(xiàn)一下哈族跛。
參考文獻:
- PCA 維基百科: https://en.wikipedia.org/wiki/Principal_component_analysis.
- 講解詳細又全面的PCA教程: A tutorial on Principal Components Analysis, Lindsay I Smith.
- 博客:矩陣的奇異值分解(SVD)(理論):http://www.cnblogs.com/jclian91/p/8022426.html.
- 博客:主成分分析PCA: https://www.cnblogs.com/zhangchaoyang/articles/2222048.html.
- Scikit-learn的PCA介紹:http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.