該系列文章僅限于某驗滑塊研究梭稚,不會公開具體算法源碼,歡迎討論
本文關(guān)聯(lián)文章:
縱觀
入微
芥子
浩瀚
一. 識別滑塊缺口
- 使用ddddocr識別
該算法識別準確率為95%左右,測試三輪欣除,每輪測試100次
def generate_distance(slice_url, bg_url):
"""
:param bg_url: 背景圖地址
:param slice_url: 滑塊圖地址
:return: distance
:rtype: Integer
"""
slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)
slice_image = requests.get(slice_url).content
bg_image = requests.get(bg_url).content
result = slide.slide_match(target_bytes, bg_image, simple_target=True)
return result['target'][0]
- 使用cv2識別
該算法識別準確率為95%左右,測試三輪,每輪測試100次
def generate_distance(slice_url, bg_url):
"""
:param bg_url: 背景圖地址
:param slice_url: 滑塊圖地址
:return: distance
:rtype: Integer
"""
slice_image = np.asarray(bytearray(requests.get(slice_url).content), dtype=np.uint8)
slice_image = cv2.imdecode(slice_image, 1)
slice_image = cv2.Canny(slice_image, 255, 255)
bg_image = np.asarray(bytearray(requests.get(bg_url).content), dtype=np.uint8)
bg_image = cv2.imdecode(bg_image, 1)
bg_image = cv2.pyrMeanShiftFiltering(bg_image, 5, 50)
bg_image = cv2.Canny(bg_image, 255, 255)
result = cv2.matchTemplate(bg_image, slice_image, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
return max_loc[0]
二. 構(gòu)造滑塊軌跡
- 構(gòu)造軌跡庫
圖片長度為300闯袒,理論上就300種軌跡,實際上應(yīng)該是200+種,還要減去滑塊圖的長度80
手動滑他個幾百次政敢,并把距離和軌跡記錄下來其徙,識別出距離后直接查對應(yīng)軌跡 - 算法構(gòu)造軌跡track
def generate_track(distance):
def __ease_out_expo(step):
return 1 if step == 1 else 1 - pow(2, -10 * step)
tracks = [[random.randint(20, 60), random.randint(10, 40), 0]]
count = 30 + int(distance / 2)
_x, _y = 0, 0
for item in range(count):
x = round(__ease_out_expo(item / count) * distance)
t = random.randint(10, 20)
if x == _x:
continue
tracks.append([x - _x, _y, t])
_x = x
tracks.append([0, 0, random.randint(200, 300)])
times = sum([track[2] for track in tracks])
return tracks, times
三. 結(jié)語
本篇文章篇幅不長,主要也沒啥好說的喷户,驗證碼研究多了唾那,識別和軌跡就那幾套方法,換湯不換藥
函數(shù)a(e, t)中的重頭戲:c.guid()褪尝、_.encrypt()闹获、i.encrypt()、c.arrayToHex()四個函數(shù)我們放到浩瀚篇再說吧河哑,不然我這紫極魔瞳四大境界變成三大境界了避诽,哈哈哈
浩瀚