1.lambda表達(dá)式
? ? ? ? ? Lambda 允許把函數(shù)作為參數(shù)傳遞進(jìn)方法中
? ? ? ? ? // 類(lèi)型聲明 MathOperation addition = (int a, int b) -> a + b;?
? ? ? ? ? // 不用類(lèi)型聲明 MathOperation subtraction = (a, b) -> a - b;
? ? ? ? ? // 大括號(hào)中的返回語(yǔ)句 MathOperation multiplication = (int a, int b) -> { return a * b; };
? ? ? ? ? Lambda 表達(dá)式只能引用標(biāo)記了 final 的外層局部變量,lambda 表達(dá)式的局部變量可以不用聲明為 final史翘,但是必須不可被后面的代碼修改
? ? 2.方法引用
? ? ? ? 構(gòu)造器引用:它的語(yǔ)法是Class::new柜裸,或者更一般的Class< T >::new
? ? ? ? public static Car create(final Supplier<Car> supplier) { return supplier.get(); }
? ? ? ? final Car car = Car.create( Car::new );
? ? ? ? 靜態(tài)方法引用:它的語(yǔ)法是Class::static_method
? ? ? ? public static void collide(final Car car) { System.out.println("Collided " + car.toString()); }
? ? ? ? cars.forEach( Car::collide );
? ? ? ? 特定類(lèi)的任意對(duì)象的方法引用:它的語(yǔ)法是Class::method
? ? ? ? public void repair() { System.out.println("Repaired " + this.toString()); }
? ? ? ? cars.forEach( Car::repair );
? ? ? 特定對(duì)象的方法引用:它的語(yǔ)法是instance::method
? ? ? public void follow(final Car another) { System.out.println("Following the " + another.toString()); }
? ? ? final Car police = Car.create( Car::new );
? ? ? cars.forEach( police::follow );
? ? 3.Stream
? ? ? ? Stream(流)是一個(gè)來(lái)自數(shù)據(jù)源的元素隊(duì)列并支持聚合操作
? ? ? ? 數(shù)據(jù)源?流的來(lái)源拗馒。 可以是集合,數(shù)組,I/O channel味悄, 產(chǎn)生器generator 等。
? ? ? ? 聚合操作?類(lèi)似SQL語(yǔ)句一樣的操作, 比如filter, map, reduce, find, match, sorted等旗国。
? ? ? ? forEach? ? limit? ? sorted?
? ? ? ? Random random = new Random();
? ? ? ? random.ints().limit(10).sorted().forEach(System.out::println);
? ? ? ? map
? ? ? ? List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);
? ? ? ? // 獲取對(duì)應(yīng)的平方數(shù)
? ? ? ? List<Integer> squaresList = numbers.stream().map( i -> i*i).distinct().collect(Collectors.toList());
? ? ? ? filter
? ? ? ? List<String>strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");
? ? ? ? // 獲取空字符串的數(shù)量
? ? ? ? long count = strings.stream().filter(string -> string.isEmpty()).count();
? ? ? ? Collectors
? ? ? ? List<String>strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");
? ? ? ? List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList());
? ? ? ? System.out.println("篩選列表: " + filtered);
? ? ? ? String mergedString = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.joining(", "));
? ? ? ? System.out.println("合并字符串: " + mergedString);
(1)Stream創(chuàng)建
1) 通過(guò)參數(shù)序列創(chuàng)建Stream
// 利用可變參數(shù)直接構(gòu)造Stream,相比Arrays.stream()更簡(jiǎn)單
// 下面語(yǔ)句創(chuàng)建的流內(nèi)容:10,20,30,40,50
final IntStream stream = IntStream.of(10, 20, 30, 40, 50);
// 下面語(yǔ)句創(chuàng)建的流內(nèi)容:red,blue,green
final Stream<String> colorStream = Stream.of("red", "blue", "green");
2) 通過(guò)數(shù)組創(chuàng)建Stream
相比Stream.of()注整,不用區(qū)分基礎(chǔ)數(shù)據(jù)類(lèi)型能曾,但參數(shù)只能是數(shù)組,不支持參數(shù)序列創(chuàng)建
final Integer[] numbers = {10, 20, 30, 40, 50, 60};
final Stream<Integer> numberStream = Arrays.stream(numbers);
final int[] intNumbers = {10, 20, 30, 40, 50, 60};
final IntStream result = Arrays.stream(intNumbers);
3) 通過(guò)集合創(chuàng)建Stream
final Collection<Integer> collection = Lists.newArrayList(10, 20, 30, 40, 50, 60);
final Stream<Integer> numberStream = collection.stream();
4) 通過(guò)集合創(chuàng)建并行Stream
final Collection<Integer> numbers = Lists.newArrayList(10, 20, 30, 40, 50, 60);
// 直接創(chuàng)建并行流
Stream<Integer> numberStream = numbers.parallelStream();
// 將串行流轉(zhuǎn)換為并行流
numberStream = numbers.stream().parallel();
5) 通過(guò)IO方式創(chuàng)建Stream
// 讀取文件的內(nèi)容肿轨,生成stream流
final Stream<String> stream = Files.lines(Paths.get("data.txt"), Charsets.UTF_8);
// 獲取目錄下的文件列表信息
final Stream<Path> listFile = Files.list(Paths.get("/"));
6) 通過(guò)生成器創(chuàng)建Stream
SecureRandom random = SecureRandom.getInstanceStrong();
// 直接傳入instance::method
// 下面語(yǔ)句創(chuàng)建的result包含10個(gè)隨機(jī)數(shù)
Stream<Integer> result = Stream.generate(random::nextInt).limit(10);
// 直接傳入lambda表達(dá)式
// 下面語(yǔ)句創(chuàng)建的result包含10個(gè)元素寿冕,每個(gè)值由根據(jù)當(dāng)前時(shí)間 % 100計(jì)算得來(lái)
// 以某次執(zhí)行為例,result包含36,3,40,71,46,43,68,97,38,92
result = Stream.generate(() -> (int) (System.nanoTime() % 100)).limit(10);
7) 通過(guò)iterate創(chuàng)建Stream
// 以0為種子椒袍,f(n) = n + 3, f(f(n)) ...
// 下面語(yǔ)句創(chuàng)建的Stream內(nèi)容:0 3 6 9 12 15 18 21 24 27
Stream.iterate(0, n -> n + 3).limit(10).forEach(Stubs::doWhatever);
8) 通過(guò)區(qū)間創(chuàng)建整數(shù)序列Stream
// 通過(guò)range驼唱、rangeClosed生成序列,該序列為數(shù)學(xué)中的區(qū)間序列驹暑。
// 生成[-100, 100)區(qū)間的元素序列玫恳,不包括end元素100
final IntStream range = IntStream.range(-100, 100);
// 由于start > end,不符合區(qū)間定義优俘,返回空區(qū)間京办,Stream中元素長(zhǎng)度為0
final IntStream emptyRange = IntStream.range(100, -100);
// 生成[-100,100]區(qū)間的元素序列,包含end元素100
final IntStream rangeClosed = IntStream.rangeClosed(-100, 100);
// LongStream range生成
// 生成[-100, 100)區(qū)間的元素序列帆焕,不包括end元素100
final LongStream longRange = LongStream.range(-100L, 100L);
// 生成[-100,100]區(qū)間的元素序列惭婿,包含end元素100
final LongStream longRangeClosed = LongStream.rangeClosed(-100L, 100L);
(1)Stream基礎(chǔ)操作
1) 計(jì)算Stream大小
// 計(jì)算Stream中元素的格式,count為特殊的reduce操作叶雹,對(duì)于sum(), max(), min(), average()财饥,count()等操作不建議直接使用reduce()
// 等同于stream.mapToLong(e -> 1L).sum();
long count = Stream.of().count(); // count = 0
count = Stream.of(10).count(); // count = 1
count = Stream.of(10, 20, 30, 40, 50).count(); // count = 5
1) Stream轉(zhuǎn)換為字符串
final Stream<String> stream = Stream.of("red", "blue", "green");
// 執(zhí)行結(jié)果:colors值為red|blue|green
String colors = stream.collect(Collectors.joining("|"));
2) Stream轉(zhuǎn)換為數(shù)組
final Stream<String> stream = Stream.of("red", "blue", "green");
// 執(zhí)行結(jié)果:colors數(shù)組為[red, blue, green]
String[] colors = stream.toArray(String[]::new);
3) Stream轉(zhuǎn)換為ArrayList
final Stream<String> stream = Stream.of("red", "blue", "green");
// colors類(lèi)型為ArrayList,結(jié)果為[red, blue, green]
List<String> colors = stream.collect(Collectors.toList());
4) Stream轉(zhuǎn)換為L(zhǎng)ist
不同業(yè)務(wù)場(chǎng)景對(duì)性能浑娜、內(nèi)存占用等有不同的訴求佑力。對(duì)于ArrayList不滿足的場(chǎng)景,可將Stream元素收集到指定類(lèi)型的List筋遭,如:LinkedList打颤。
final Stream<String> stream = Stream.of("red", "blue", "green");
// Stream轉(zhuǎn)換的List類(lèi)型為L(zhǎng)inkedList
// 執(zhí)行結(jié)果:colors結(jié)果為[red, blue, green]
List<String> colors = stream.collect(Collectors.toCollection(LinkedList::new));
5) Stream轉(zhuǎn)換為指定類(lèi)型Collection
final Stream<String> stream = Stream.of("red", "blue", "green");
// colors為L(zhǎng)inkedHashSet,對(duì)于其他的類(lèi)型在toCollection()方法參數(shù)中指定
Set<String> colors = stream.collect(Collectors.toCollection(LinkedHashSet::new));
6) Stream轉(zhuǎn)換為Set
final Stream<String> stream = Stream.of("red", "blue", "green");
// 默認(rèn)轉(zhuǎn)換為HashSet
// 執(zhí)行結(jié)果:colors值為[red, green, blue]
final Set<String> colors = stream.collect(Collectors.toSet());
7) Stream轉(zhuǎn)換為Map
Collectors.toMap()需要保證Key唯一性漓滔,如果不唯一编饺,則需給出合并策略
Collectors.toMap()需要保證Stream元素為NonNull,且映射到Map的value值必須為NonNull
final Stream<User> stream = Stream.of(new User("1", "Jerry", "Male"), new User("2", "Kitty", "Female"));
// 以User的ID作為key响驴,User實(shí)例作為value透且,轉(zhuǎn)換過(guò)程默認(rèn)使用的是HashMap
// user.getId()必須是唯一的,否則會(huì)拋出java.lang.IllegalStateException: Duplicate key
// 執(zhí)行結(jié)果:map值為
// {1=User(id=1, username=Jerry, salary=0, gender=Male), 2=User(id=2, username=Kitty, salary=0, gender=Female)}
Map<String, User> map = stream.collect(Collectors.toMap(User::getId, Function.identity()));
final Stream<User> stream2 = Stream.of(new User("1", "Jerry", "Male"), new User("2", "Kitty", "Female"));
// 將User的ID作為key,username作為value
// 執(zhí)行結(jié)果:mapIdName值為{1=Jerry, 2=Kitty}
Map<String, String> mapIdName = stream2.collect(Collectors.toMap(User::getId, User::getUsername));
如果Collectors.toMap() key值不唯一秽誊,給出合并策略
final Stream<User> duplicateKeyStream =
? ? Stream.of(new User("1", "Jerry", "Male"), new User("20", "Jerry", "Female"));
// 下面以u(píng)sername作為key鲸沮,Stream中存在同名的username "Jerry"。
// 以“后者覆蓋前者”的策略解決沖突
// 執(zhí)行結(jié)果:map值為{Jerry=User(id=20, username=Jerry, salary=0, gender=Female)}
Map<String, User> map =
? ? duplicateKeyStream.collect(Collectors.toMap(User::getUsername, Function.identity(), (key1, key2) -> key2));
如果Stream存在null元素锅论,Collectors.toMap()轉(zhuǎn)換失敗,建議通過(guò)filter()過(guò)濾后再進(jìn)行轉(zhuǎn)換
final Stream<User> nullElementStream = Stream.of(new User("1", "Jerry", "Male"), null);
// 下面代碼Stream中存在null元素讼溺,Collectors.toMap()將拋出NullPointerException異常
Map<String, String> mapIdName = nullElementStream.collect(Collectors.toMap(User::getId, User::getUsername));
// 過(guò)濾出NonNull的元素后進(jìn)行Map轉(zhuǎn)換,轉(zhuǎn)換后的結(jié)果為{1=Jerry}
nullElementStream.filter(Objects::nonNull).collect(Collectors.toMap(User::getId, User::getUsername));
如果Map的value值為null最易,Collectors.toMap()轉(zhuǎn)換失敗,建議通過(guò)filter()過(guò)濾后再進(jìn)行轉(zhuǎn)換
final Stream<User> nullValueStream = Stream.of(new User("1", "Jerry", "Male"), new User("2", null));
// 將id怒坯、username信息轉(zhuǎn)換為map,由于存在username為null藻懒,Collectors.toMap()將拋出NullPointerException異常
Map<String, String> mapIdName = nullValueStream.collect(Collectors.toMap(User::getId, User::getUsername));
// 過(guò)濾出Map的value為NonNull的元素后進(jìn)行Map轉(zhuǎn)換剔猿,轉(zhuǎn)換后的結(jié)果為{1=Jerry}
nullValueStream.filter(p -> p != null && StringUtils.isNotEmpty(p.getUsername()))
? ? .collect(Collectors.toMap(User::getId, User::getUsername));
8) Stream轉(zhuǎn)換為分組Map
final Stream<User> stream = Stream.of(new User("1", "Jerry", "Male"), new User("2", "Kitty", "Female"));
// 按性別分組,分組結(jié)果為
// {Female=[User(id=2, username=Kitty, salary=0, gender=Female)], Male=[User(id=1, username=Jerry, salary=0,
// gender=Male)]}
Map<String, List<User>> group = stream.collect(Collectors.groupingBy(User::getGender));
// Stream實(shí)例執(zhí)行一次終端操作后將不能再次使用嬉荆,因此归敬,此處創(chuàng)建新的Stream
final Stream<User> stream2 = Stream.of(new User("1", "Jerry", "Male"), new User("2", "Kitty", "Female"));
// 按是否為Female分組,分組結(jié)果為
// {false=[User(id=1, username=Jerry, salary=0, gender=Male)], true=[User(id=2, username=Kitty, salary=0,
// gender=Female)]}
Map<Boolean, List<User>> group2 =
? ? stream2.collect(Collectors.partitioningBy(p -> "Female".equalsIgnoreCase(p.getGender())));
? ? 4.日期時(shí)間 API
? ? ? ? java.time包涵蓋了所有處理日期鄙早,時(shí)間弄慰,日期/時(shí)間,時(shí)區(qū)蝶锋,時(shí)刻(instants)陆爽,過(guò)程(during)與時(shí)鐘(clock)的操作
? ? ? ? import java.time.LocalDate;
? ? ? ? import java.time.LocalTime;
? ? ? ? import java.time.LocalDateTime;
? ? ? ? import java.time.Month;