最近一直在擼貓,為了貓主子的事情憂三愁四甲献,皺紋多了不少,頭發(fā)也掉了好幾根颂翼,神態(tài)也多了幾分憂郁晃洒,唯一不變的還是那份閑魚的懶散和浪蕩的心。
要說到深度學(xué)習圖像分類的經(jīng)典案例之一朦乏,那就是貓狗大戰(zhàn)了球及。貓和狗在外觀上的差別還是挺明顯的,無論是體型呻疹、四肢吃引、臉龐和毛發(fā)等等, 都是能通過肉眼很容易區(qū)分的刽锤。
那么如何讓機器來識別貓和狗呢镊尺?這就需要使用卷積神經(jīng)網(wǎng)絡(luò)來實現(xiàn)了。
網(wǎng)上已經(jīng)有不少人寫過這案例了并思,我也來嘗試下練練手庐氮。
完整代碼:https://github.com/ADlead/Dogs-Cats.git
ps:本文使用的是tensorflow1.x的版本,tf2.0版本可看下面這篇:
深度學(xué)習-python貓狗識別tensorflow2.0
一. 數(shù)據(jù)集的準備和預(yù)處理
貓狗照片的數(shù)據(jù)集直接從kaggle官網(wǎng)(https://www.kaggle.com/c/dogs-vs-cats)下載即可纺荧,下載后解壓旭愧,可以看到有訓(xùn)練集和測試集
因為從官網(wǎng)下載的圖片中test圖片是沒有標簽的,無法用來測試模型的準確率宙暇。我便把訓(xùn)練圖像集劃分成訓(xùn)練圖像集和測試圖像集输枯,分別用于訓(xùn)練模型和測試模型。把25000張圖像劃分成20000張訓(xùn)練圖像和5000張測試圖像占贫。
深度學(xué)習的框架使用的是tensorflow桃熄,為了能讓tensorflow分批輸入數(shù)據(jù)進行訓(xùn)練,我把所有的圖像像素信息存儲成batch文件型奥。訓(xùn)練集100個batch文件瞳收,每個文件有200張圖像。測試集1個batch文件厢汹,共5000張圖像螟深。
存儲成batch的代碼如下:
import cv2 as cv
import os
import numpy as np
import random
import pickle
import time
start_time = time.time()
data_dir = './data'
batch_save_path = './batch_files'
# 創(chuàng)建batch文件存儲的文件夾
os.makedirs(batch_save_path, exist_ok=True)
# 圖片統(tǒng)一大小:100 * 100
# 訓(xùn)練集 20000:100個batch文件烫葬,每個文件200張圖片
# 驗證集 5000:一個測試文件界弧,測試時 50張 x 100 批次
# 進入圖片數(shù)據(jù)的目錄凡蜻,讀取圖片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))
# print(all_data_files)
# 打算數(shù)據(jù)的順序
random.shuffle(all_data_files)
all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]
train_data = []
train_label = []
train_filenames = []
test_data = []
test_label = []
test_filenames = []
# 訓(xùn)練集
for each in all_train_files:
img = cv.imread(os.path.join(data_dir,'train/',each),1)
resized_img = cv.resize(img, (100,100))
img_data = np.array(resized_img)
train_data.append(img_data)
if 'cat' in each:
train_label.append(0)
elif 'dog' in each:
train_label.append(1)
else:
raise Exception('%s is wrong train file'%(each))
train_filenames.append(each)
# 測試集
for each in all_test_files:
img = cv.imread(os.path.join(data_dir,'train/',each), 1)
resized_img = cv.resize(img, (100,100))
img_data = np.array(resized_img)
test_data.append(img_data)
if 'cat' in each:
test_label.append(0)
elif 'dog' in each:
test_label.append(1)
else:
raise Exception('%s is wrong test file'%(each))
test_filenames.append(each)
print(len(train_data), len(test_data))
# 制作100個batch文件
start = 0
end = 200
for num in range(1, 101):
batch_data = train_data[start: end]
batch_label = train_label[start: end]
batch_filenames = train_filenames[start: end]
batch_name = 'training batch {} of 15'.format(num)
all_data = {
'data':batch_data,
'label':batch_label,
'filenames':batch_filenames,
'name':batch_name
}
with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
pickle.dump(all_data, f)
start += 200
end += 200
# 制作測試文件
all_test_data = {
'data':test_data,
'label':test_label,
'filenames':test_filenames,
'name':'test batch 1 of 1'
}
with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
pickle.dump(all_test_data, f)
end_time = time.time()
print('制作結(jié)束, 用時{}秒'.format(end_time - start_time))
運行程序后,文件就處理好了
二. 神經(jīng)網(wǎng)絡(luò)的編寫
cnn卷積神經(jīng)網(wǎng)絡(luò)的編寫如下垢箕,編寫卷積層划栓、池化層和全連接層的代碼
conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)
三. Tensorflow計算圖的構(gòu)建
然后,再搭建tensorflow的計算圖条获,定義占位符忠荞,計算損失函數(shù)、預(yù)測值和準確率等等
self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# 圖片輸入網(wǎng)絡(luò)中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 計算每一類的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)
最后的saver是要將訓(xùn)練好的模型保存到本地帅掘。
四. 模型的訓(xùn)練和測試
然后編寫訓(xùn)練部分的代碼委煤,訓(xùn)練步驟為1萬步
acc_list = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAIN_STEP):
train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
eval_ops = [self.loss, self.acc, self.train_op]
eval_ops_results = sess.run(eval_ops, feed_dict={
self.x:train_data,
self.y:train_label,
self.keep_prob:0.7
})
loss_val, train_acc = eval_ops_results[0:2]
acc_list.append(train_acc)
if (i+1) % 100 == 0:
acc_mean = np.mean(acc_list)
print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
i+1,loss_val,train_acc,acc_mean
))
if (i+1) % 1000 == 0:
test_acc_list = []
for j in range(TEST_STEP):
test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
acc_val = sess.run([self.acc],feed_dict={
self.x:test_data,
self.y:test_label,
self.keep_prob:1.0
})
test_acc_list.append(acc_val)
print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
i+1, np.mean(test_acc_list)
))
# 保存訓(xùn)練后的模型
os.makedirs(SAVE_PATH, exist_ok=True)
self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')
訓(xùn)練結(jié)果如下
訓(xùn)練1萬步后模型測試的平均準確率有0.82。
五. 識別和分類
最后修档,使用自己訓(xùn)練好的模型素标,把官網(wǎng)的測試圖片(共12500張)識別后進行分類,并將分類后的圖片分別寫入到兩個文件夾中萍悴,結(jié)果如下
可以看出头遭,分類之后還有少數(shù)分類不對的結(jié)果⊙⒂眨看來模型還有待提升计维,還可以調(diào)整網(wǎng)絡(luò)參數(shù)、調(diào)整學(xué)習率和學(xué)習步數(shù)撕予、使用圖像增強等技術(shù)對模型識別準確率進行提高鲫惶。
搞了一番,手和腳也有些累了实抡。是時候擼擼貓繼續(xù)閑魚了欠母。。
-----------------------------分割線------------------------------------
另外又寫了一篇tensorflow的圖像分類筆記吆寨,歡迎觀摩:
http://www.reibang.com/p/6bf4657ccd8e