py2neo V4 極簡使用指南:Python操作Neo4j圖數(shù)據(jù)庫

Neo4j的介紹可以參考這篇文章:《知識圖譜技術(shù)與應(yīng)用指南(轉(zhuǎn))》

其實冯勉,Python操作Neo4j舷嗡,既可以用neo4j也可以用py2neo毁腿,前者是Neo4j官方的api汰蜘,但是py2neo開發(fā)地更早仇冯,已經(jīng)到V4了。

官方文檔地址:https://py2neo.org/v4/


0族操、安裝

下載Neo4j:https://neo4j.com/download/

使用pip安裝: pip install py2neo

從github源碼安裝:pip install git+https://github.com/technige/py2neo.git#egg=py2neo


1苛坚、數(shù)據(jù)類型

1.1 節(jié)點(diǎn)Node和關(guān)系Relationship對象

圖數(shù)據(jù)庫,最重要的就是節(jié)點(diǎn)色难、邊和屬性泼舱,py2neo中最重要的就是類NodeRelationship

from py2neo.data import Node, Relationship
a = Node("Person", name="Alice")
b = Node("Person", name="Bob")
ab = Relationship(a, "KNOWS", b)
print(ab)
# (Alice)-[:KNOWS]->(Bob)

如果沒有指定節(jié)點(diǎn)之間的關(guān)系,則默認(rèn)為TO枷莉。也可以自建類Relationship的子類娇昙,如下:

c = Node("Person", name="Carol")
class WorksWith(Relationship): pass
ac = WorksWith(a, c)
print(type(ac))
# 'WORKS_WITH'

1.2 子圖Subgraph對象

集合操作是創(chuàng)建子圖最簡便的方法:

s = ab | ac
print(s)
# {(alice:Person {name:"Alice"}),  (bob:Person {name:"Bob"}),  (carol:Person {name:"Carol"}),  (Alice)-[:KNOWS]->(Bob),  (Alice)-[:WORKS_WITH]->(Carol)}
print(s.nodes())
# frozenset({(alice:Person {name:"Alice"}), (bob:Person {name:"Bob"}), (carol:Person {name:"Carol"})})
print(s.relationships())
# frozenset({(Alice)-[:KNOWS]->(Bob), (Alice)-[:WORKS_WITH]->(Carol)})

1.3 路徑Path對象和可遍歷Walkable類型

可遍歷對象是添加了遍歷信息的子圖。

w = ab + Relationship(b, "LIKES", c) + ac
print(w)
# (Alice)-[:KNOWS]->(Bob)-[:LIKES]->(Carol)<-[:WORKS_WITH]-(Alice)

1.4 記錄Record對象

Record對象是值的有序有鍵的集合笤妙,和具名元組很像冒掌。

1.5 表格Table對象

Table對象是包含Record對象的列表。


2 圖數(shù)據(jù)庫

Graph對象是最重要的和Neo4j交互的類蹲盘。

from py2neo import Graph
graph = Graph(password="password")
print(graph.run("UNWIND range(1, 3) AS n RETURN n, n * n as n_sq").to_table())
#    n | n_sq
# -----|------
#    1 |    1
#    2 |    4
#    3 |    9

2.1 數(shù)據(jù)庫Database

用于連接圖數(shù)據(jù)庫

from py2neo import Database
db = Database("bolt://camelot.example.com:7687")

默認(rèn)值是bolt://localhost:7687

default_db = Database()
>>> default_db
<Database uri='bolt://localhost:7687'>

2.2 圖Graph

Graph類表示Neo4j中的圖數(shù)據(jù)存儲空間股毫。

>>> from py2neo import Graph
>>> graph_1 = Graph()
>>> graph_2 = Graph(host="localhost")
>>> graph_3 = Graph("bolt://localhost:7687")

match匹配:

for rel in graph.match((alice, ), r_type="FRIEND"):
    print(rel.end_node["name"])

merge融合:

>>> from py2neo import Graph, Node, Relationship
>>> g = Graph()
>>> a = Node("Person", name="Alice", age=33)
>>> b = Node("Person", name="Bob", age=44)
>>> KNOWS = Relationship.type("KNOWS")
>>> g.merge(KNOWS(a, b), "Person", "name")

再創(chuàng)建第三個節(jié)點(diǎn):

>>> c = Node("Company", name="ACME")
>>> c.__primarylabel__ = "Company"
>>> c.__primarykey__ = "name"
>>> WORKS_FOR = Relationship.type("WORKS_FOR")
>>> g.merge(WORKS_FOR(a, c) | WORKS_FOR(b, c))

nodes方法,找到所有符合條件的節(jié)點(diǎn):

>>> graph = Graph()
>>> graph.nodes[1234]
(_1234:Person {name: 'Alice'})
>>> graph.nodes.get(1234)
(_1234:Person {name: 'Alice'})
>>> graph.nodes.match("Person", name="Alice").first()
(_1234:Person {name: 'Alice'})

2.3 事務(wù)Transactions

commit() 提交事務(wù)

create(subgraph) 創(chuàng)建節(jié)點(diǎn)和關(guān)系

>>> from py2neo import Graph, Node, Relationship
>>> g = Graph()
>>> tx = g.begin()
>>> a = Node("Person", name="Alice")
>>> tx.create(a)
>>> b = Node("Person", name="Bob")
>>> ab = Relationship(a, "KNOWS", b)
>>> tx.create(ab)
>>> tx.commit()
>>> g.exists(ab)
True

2.4 查詢結(jié)果

Cursor

前進(jìn)一個節(jié)點(diǎn)召衔,打印節(jié)點(diǎn)的名字:

while cursor.forward():
    print(cursor.current["name"])

因為Cursor是可迭代對象铃诬,也可以這樣:

for record in cursor:
    print(record["name"])

只關(guān)心一個節(jié)點(diǎn),則:

if cursor.forward():
    print(cursor.current["name"])

或:

print(next(cursor)["name"])

從單條記錄只返回一個值:

print(cursor.evaluate())

data()苍凛,提取出所有數(shù)據(jù):

>>> from py2neo import Graph
>>> graph = Graph()
>>> graph.run("MATCH (a:Person) RETURN a.name, a.born LIMIT 4").data()
[{'a.born': 1964, 'a.name': 'Keanu Reeves'},
 {'a.born': 1967, 'a.name': 'Carrie-Anne Moss'},
 {'a.born': 1961, 'a.name': 'Laurence Fishburne'},
 {'a.born': 1960, 'a.name': 'Hugo Weaving'}]

evaluate(field=0)趣席,從下條記錄返回第一個字段:

>>> from py2neo import Graph
>>> g = Graph()
>>> g.run("MATCH (a) WHERE a.email={x} RETURN a.name", x="bob@acme.com").evaluate()
'Bob Robertson'

stats(),返回查詢統(tǒng)計:

>>> from py2neo import Graph
>>> g = Graph()
>>> g.run("CREATE (a:Person) SET a.name = 'Alice'").stats()
constraints_added: 0
constraints_removed: 0
contained_updates: True
indexes_added: 0
indexes_removed: 0
labels_added: 1
labels_removed: 0
nodes_created: 1
nodes_deleted: 0
properties_set: 1
relationships_created: 0
relationships_deleted: 0

to_data_frame(index=None, columns=None, dtype=None)毫深,將數(shù)據(jù)返回為pandas的DataFrame:

>>> from py2neo import Graph
>>> graph = Graph()
>>> graph.run("MATCH (a:Person) RETURN a.name, a.born LIMIT 4").to_data_frame()
   a.born              a.name
0    1964        Keanu Reeves
1    1967    Carrie-Anne Moss
2    1961  Laurence Fishburne
3    1960        Hugo Weaving

3 py2neo.matching – 實體匹配

3.1 節(jié)點(diǎn)匹配

使用NodeMatcher匹配節(jié)點(diǎn):

>>> from py2neo import Graph, NodeMatcher
>>> graph = Graph()
>>> matcher = NodeMatcher(graph)
>>> matcher.match("Person", name="Keanu Reeves").first()
(_224:Person {born:1964,name:"Keanu Reeves"})

使用where子句匹配:

>>> list(matcher.match("Person").where("_.name =~ 'K.*'"))
[(_57:Person {born: 1957, name: 'Kelly McGillis'}),
 (_80:Person {born: 1958, name: 'Kevin Bacon'}),
 (_83:Person {born: 1962, name: 'Kelly Preston'}),
 (_224:Person {born: 1964, name: 'Keanu Reeves'}),
 (_226:Person {born: 1966, name: 'Kiefer Sutherland'}),
 (_243:Person {born: 1957, name: 'Kevin Pollak'})]

排序order_by()和數(shù)量limit()限制:

>>> list(matcher.match("Person").where("_.name =~ 'K.*'").order_by("_.name").limit(3))
[(_224:Person {born: 1964, name: 'Keanu Reeves'}),
 (_57:Person {born: 1957, name: 'Kelly McGillis'}),
 (_83:Person {born: 1962, name: 'Kelly Preston'})]

只統(tǒng)計數(shù)量吩坝,用len():

>>> len(matcher.match("Person").where("_.name =~ 'K.*'"))
6

3.2 關(guān)系匹配RelationshipMatcher

使用的方法和節(jié)點(diǎn)匹配很相似:

first()

order_by(*fields)

where(*conditions, **properties)

4 對象圖映射Object-Graph Mapping

用于綁定Python對象和底層圖數(shù)據(jù)

class Movie(GraphObject):
    __primarykey__ = "title"

    title = Property()
    tag_line = Property("tagline")
    released = Property()

    actors = RelatedFrom("Person", "ACTED_IN")
    directors = RelatedFrom("Person", "DIRECTED")
    producers = RelatedFrom("Person", "PRODUCED")


class Person(GraphObject):
    __primarykey__ = "name"

    name = Property()
    born = Property()

    acted_in = RelatedTo(Movie)
    directed = RelatedTo(Movie)
    produced = RelatedTo(Movie)

4.1 圖對象

GraphObject,用作基類

4.2 屬性Property()

>>> class Person(GraphObject):
...     name = Property()
...
>>> alice = Person()
>>> alice.name = "Alice Smith"
>>> alice.name
"Alice Smith"

4.3 標(biāo)簽Label()

標(biāo)簽是布爾值哑蔫,默認(rèn)是False

>>> class Food(GraphObject):
...     hot = Label()
...
>>> pizza = Food()
>>> pizza.hot
False
>>> pizza.hot = True
>>> pizza.hot
True

4.4 關(guān)聯(lián)對象

class Person(GraphObject):
    __primarykey__ = "name"

    name = Property()

    likes = RelatedTo("Person")
for friend in person.likes:
    print(friend.name)

4.5 對象匹配

>>> Person.match(graph, "Keanu Reeves").first()
<Person name='Keanu Reeves'>
>>> list(Person.match(graph).where("_.name =~ 'K.*'"))
[<Person name='Keanu Reeves'>,
 <Person name='Kevin Bacon'>,
 <Person name='Kiefer Sutherland'>,
 <Person name='Kevin Pollak'>,
 <Person name='Kelly McGillis'>,
 <Person name='Kelly Preston'>]

4.6 對象操作

>>> alice = Person()
>>> alice.name = "Alice Smith"
>>> graph.push(alice)
>>> alice.__node__
(_123:Person {name: 'Alice Smith'})
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末钉寝,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子闸迷,更是在濱河造成了極大的恐慌嵌纲,老刑警劉巖,帶你破解...
    沈念sama閱讀 217,185評論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件腥沽,死亡現(xiàn)場離奇詭異逮走,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)今阳,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,652評論 3 393
  • 文/潘曉璐 我一進(jìn)店門师溅,熙熙樓的掌柜王于貴愁眉苦臉地迎上來茅信,“玉大人,你說我怎么就攤上這事墓臭≌壕ǎ” “怎么了?”我有些...
    開封第一講書人閱讀 163,524評論 0 353
  • 文/不壞的土叔 我叫張陵窿锉,是天一觀的道長酌摇。 經(jīng)常有香客問我,道長嗡载,這世上最難降的妖魔是什么窑多? 我笑而不...
    開封第一講書人閱讀 58,339評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮洼滚,結(jié)果婚禮上埂息,老公的妹妹穿的比我還像新娘。我一直安慰自己判沟,他們只是感情好耿芹,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,387評論 6 391
  • 文/花漫 我一把揭開白布崭篡。 她就那樣靜靜地躺著挪哄,像睡著了一般。 火紅的嫁衣襯著肌膚如雪琉闪。 梳的紋絲不亂的頭發(fā)上迹炼,一...
    開封第一講書人閱讀 51,287評論 1 301
  • 那天,我揣著相機(jī)與錄音颠毙,去河邊找鬼斯入。 笑死,一個胖子當(dāng)著我的面吹牛蛀蜜,可吹牛的內(nèi)容都是我干的刻两。 我是一名探鬼主播,決...
    沈念sama閱讀 40,130評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼滴某,長吁一口氣:“原來是場噩夢啊……” “哼磅摹!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起霎奢,我...
    開封第一講書人閱讀 38,985評論 0 275
  • 序言:老撾萬榮一對情侶失蹤户誓,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后幕侠,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體帝美,經(jīng)...
    沈念sama閱讀 45,420評論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,617評論 3 334
  • 正文 我和宋清朗相戀三年晤硕,在試婚紗的時候發(fā)現(xiàn)自己被綠了悼潭。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片庇忌。...
    茶點(diǎn)故事閱讀 39,779評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖舰褪,靈堂內(nèi)的尸體忽然破棺而出漆枚,到底是詐尸還是另有隱情,我是刑警寧澤抵知,帶...
    沈念sama閱讀 35,477評論 5 345
  • 正文 年R本政府宣布墙基,位于F島的核電站,受9級特大地震影響刷喜,放射性物質(zhì)發(fā)生泄漏残制。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,088評論 3 328
  • 文/蒙蒙 一掖疮、第九天 我趴在偏房一處隱蔽的房頂上張望初茶。 院中可真熱鬧,春花似錦浊闪、人聲如沸恼布。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,716評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽折汞。三九已至,卻和暖如春盖腿,著一層夾襖步出監(jiān)牢的瞬間爽待,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,857評論 1 269
  • 我被黑心中介騙來泰國打工翩腐, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留鸟款,地道東北人。 一個月前我還...
    沈念sama閱讀 47,876評論 2 370
  • 正文 我出身青樓茂卦,卻偏偏與公主長得像何什,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子等龙,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,700評論 2 354