A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y).
Given a starting point (sx, sy) and a target point (tx, ty), return True if and only if a sequence of moves exists to transform the point (sx, sy) to (tx, ty). Otherwise, return False.
Examples:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: True
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: False
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: True
Note:
sx, sy, tx, ty will all be integers in the range [1, 10^9].
一刷
題解:首先找到tx和ty的最大公約數(shù)g,因?yàn)閮蓚€(gè)數(shù)a和b的最大公約數(shù)g可以表示為a和b的線性和姜挺。也就是說(shuō),存在整數(shù)s和t使g = sa + tb
用輾轉(zhuǎn)相除法求得g
class Solution:
def reachingPoints(self, sx, sy, tx, ty):
"""
:type sx: int
:type sy: int
:type tx: int
:type ty: int
:rtype: bool
"""
while sx < tx and sy < ty:#find common divisor
if tx>ty: tx %=ty
else: ty %= tx
if sx == tx: return (ty-sy)%sx == 0
if sy == ty return (tx -sx) %sy == 0
return False