單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)分析||Seurat3教程: 自定義降維方法MDS

Seurat - Dimensional Reduction Vignette

我們知道單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)一個(gè)主要的特點(diǎn)就是數(shù)據(jù)稀疏,維度較高巡语◆岬福基于此,Seurat提供了不少降維的方法:

主要是PCA,TSNE,UMAP三種男公,其實(shí)降維方法何其的多:

那么荤堪,我們?nèi)绻雽?duì)我們的數(shù)據(jù)應(yīng)用其他降維方法,我們需要如何操作呢枢赔?今天我們就帶大家走一走澄阳,Seurat對(duì)象的【multi-dimensional scaling (MDS)】降維方法。若要求原始空間中樣本之間的距離在低維空間中得以保持踏拜,即得到"多維縮放" (Multiple Dimensional Scaling碎赢,簡(jiǎn)稱 MDS),基于此速梗,來(lái)探究降維的一般方法以及進(jìn)一步了解Seurat的數(shù)據(jù)結(jié)構(gòu)肮塞。

什么,PCA姻锁,TSNE枕赵,UMAP我還沒(méi)搞明白呢? MDS是什么意思位隶?看看運(yùn)來(lái)哥上一段感情經(jīng)歷的筆記啊:

數(shù)量生態(tài)學(xué)筆記||非約束排序|NMDS

Seurat3 中的降維結(jié)構(gòu)

在Seurat v3.0中拷窜,存儲(chǔ)和與維度縮減信息的交互已經(jīng)被一般化并正式化為DimReduc對(duì)象。每個(gè)維度縮減過(guò)程作為一個(gè)命名列表的元素存儲(chǔ)在object@slot中的DimReduc對(duì)象中。訪問(wèn)這些縮減可以通過(guò)[[操作符調(diào)用所需的縮減的名稱來(lái)完成篮昧。例如赋荆,在使用RunPCA運(yùn)行主成分分析之后,object[['pca']]將包含pca的結(jié)果恋谭。通過(guò)向列表中添加新元素糠睡,用戶可以添加額外的、自定義的維度縮減疚颊。每個(gè)存儲(chǔ)的維度縮減包含以下slot:

  • cell.embeddings: stores the coordinates for each cell in low-dimensional space.
  • feature.loadings: stores the weight for each feature along each dimension of the embedding
  • feature.loadings.projected:Seurat typically calculate the dimensional reduction on a subset of genes (for example, high-variance genes), and then project that structure onto the entire dataset (all genes). The results of that projection (calculated with ProjectDim ) are stored in this slot. Note that the cell loadings will remain unchanged after projection but there are now feature loadings for all feature
  • stdev: The standard deviations of each dimension. Most often used with PCA (storing the square roots of the eigenvalues of the covariance matrix) and can be useful when looking at the drop off in the amount of variance that is explained by each successive dimension.
  • key: Sets the column names for the cell.embeddings and feature.loadings matrices. For example, for PCA, the column names are PC1, PC2, etc., so the key is “PC”.
  • jackstraw: Stores the results of the jackstraw procedure run using this dimensional reduction technique. Currently supported only for PCA.
  • misc: Bonus slot to store any other information you might want

為了訪問(wèn)這些插槽狈孔,我們提供了EmbeddingsLoadingsStdev函數(shù):

library(Seurat)
pbmc_small[["pca"]]

A dimensional reduction object with key PC_ 
 Number of dimensions: 19 
 Projected dimensional reduction calculated:  TRUE 
 Jackstraw run: TRUE 
 Computed using assay: RNA

我們用相應(yīng)的函數(shù)方法來(lái)查看一下啊

> head(Embeddings(pbmc_small, reduction = "pca")[, 1:5])  # 細(xì)胞  PCA坐標(biāo)值
                      PC_1       PC_2       PC_3      PC_4       PC_5
ATGCCAGAACGACT -0.77403708 -0.8996461 -0.2493078 0.5585948  0.4650838
CATGGCCTGTGCAT -0.02602702 -0.3466795  0.6651668 0.4182900  0.5853204
GAACCTGATGAACC -0.45650250  0.1795811  1.3175907 2.0137210 -0.4818851
TGACTGGATTCTCA -0.81163243 -1.3795340 -1.0019320 0.1390503 -1.5982232
AGTCAGACTGCACA -0.77403708 -0.8996461 -0.2493078 0.5585948  0.4650838
TCTGATACACGTGT -0.77403708 -0.8996461 -0.2493078 0.5585948  0.4650838
> head(Loadings(pbmc_small, reduction = "pca")[, 1:5])  # 基因在每個(gè)主成分中的loading值
              PC_1        PC_2        PC_3        PC_4         PC_5
PPBP    0.33832535  0.04095778  0.02926261  0.03111034 -0.090420744
IGLL5  -0.03504289  0.05815335 -0.29906272  0.54744454  0.214603428
VDAC3   0.11990482 -0.10994433 -0.02386025  0.06015126 -0.809207588
CD1C   -0.04690284  0.19835522 -0.35090617 -0.51112169 -0.130306281
AKR1C3 -0.03894635 -0.42880452  0.08845847 -0.27274386  0.087791646
PF4     0.34392057  0.02474860 -0.02519515 -0.01231411 -0.006725932
> head(Stdev(pbmc_small, reduction = "pca"))  # 標(biāo)準(zhǔn)差
[1] 2.7868782 1.6145733 1.3162945 1.1241143 1.0347596 0.9876531

Seurat提供了RunPCA (pca)和RunTSNE (tsne)材义,并表示了通常應(yīng)用于scRNA-seq數(shù)據(jù)的降維技術(shù)均抽。當(dāng)使用這些功能時(shí),所有插槽都會(huì)自動(dòng)填充其掂。

我們還允許用戶添加單獨(dú)計(jì)算的自定義維縮減技術(shù)的結(jié)果(例如油挥,多維縮放(MDS)或零膨脹因子分析)。您所需要的只是一個(gè)矩陣款熬,其中包含低維空間中每個(gè)單元的坐標(biāo)深寥,如下所示.

存儲(chǔ)自定義維度縮減計(jì)算

Classical (Metric) Multidimensional Scaling
Classical multidimensional scaling (MDS) of a data matrix. Also known as principal coordinates analysis (Gower, 1966).

雖然不是作為Seurat包的一部分,但它很容易在r中運(yùn)行多維縮放(MDS)贤牛。如果你有興趣運(yùn)行MDS并將輸出存儲(chǔ)在Seurat對(duì)象中:

# Before running MDS, we first calculate a distance matrix between all pairs of cells.  Here we
# use a simple euclidean distance metric on all genes, using scale.data as input
d <- dist(t(GetAssayData(pbmc_small, slot = "scale.data")))
# Run the MDS procedure, k determines the number of dimensions
mds <- cmdscale(d = d, k = 2)

head(mds)
                     [,1]       [,2]
ATGCCAGAACGACT 0.77403708 -0.8996461
CATGGCCTGTGCAT 0.02602702 -0.3466795
GAACCTGATGAACC 0.45650250  0.1795811
TGACTGGATTCTCA 0.81163243 -1.3795340
AGTCAGACTGCACA 0.77403708 -0.8996461
TCTGATACACGTGT 0.77403708 -0.8996461
# cmdscale returns the cell embeddings, we first label the columns to ensure downstream
# consistency
colnames(mds) <- paste0("MDS_", 1:2)
# We will now store this as a custom dimensional reduction called 'mds'
pbmc_small[["mds"]] <- CreateDimReducObject(embeddings = mds, key = "MDS_", assay = DefaultAssay(pbmc_small))

pbmc_small
An object of class Seurat 
230 features across 80 samples within 1 assay 
Active assay: RNA (230 features)
 3 dimensional reductions calculated: pca, tsne, mds

我們的對(duì)象中已經(jīng)有了mds這個(gè)slot了惋鹅,下面我們像pca , tsne. umap,那樣可視化它:

# We can now use this as you would any other dimensional reduction in all downstream functions
DimPlot(pbmc_small, reduction = "mds", pt.size = 0.5)
pbmc_small <- ProjectDim(pbmc_small, reduction = "mds")
MDS_ 1 
Positive:  HLA-DPB1, HLA-DQA1, S100A9, S100A8, GNLY, RP11-290F20.3, CD1C, AKR1C3, IGLL5, VDAC3 
       PARVB, RUFY1, PGRMC1, MYL9, TREML1, CA2, TUBB1, PPBP, PF4, SDPR 
Negative:  SDPR, PF4, PPBP, TUBB1, CA2, TREML1, MYL9, PGRMC1, RUFY1, PARVB 
       VDAC3, IGLL5, AKR1C3, CD1C, RP11-290F20.3, GNLY, S100A8, S100A9, HLA-DQA1, HLA-DPB1 
MDS_ 2 
Positive:  HLA-DPB1, HLA-DQA1, S100A8, S100A9, CD1C, RP11-290F20.3, PARVB, IGLL5, MYL9, SDPR 
       PPBP, CA2, RUFY1, TREML1, PF4, TUBB1, PGRMC1, VDAC3, AKR1C3, GNLY 
Negative:  GNLY, AKR1C3, VDAC3, PGRMC1, TUBB1, PF4, TREML1, RUFY1, CA2, PPBP 
       SDPR, MYL9, IGLL5, PARVB, RP11-290F20.3, CD1C, S100A9, S100A8, HLA-DQA1, HLA-DPB1 
Warning message:
In print.DimReduc(x = redeuc, dims = dims.print, nfeatures = nfeatures.print,  :
  Only 2 dimensions have been computed.
# Display the results as a heatmap
DimHeatmap(pbmc_small, reduction = "mds", dims = 1, cells = 500, projected = TRUE, balanced = TRUE)
VlnPlot(pbmc_small, features = "MDS_1")

查看MDS1維度如何與PC1維度相關(guān)性:

# See how the first MDS dimension is correlated with the first PC dimension
FeatureScatter(pbmc_small, feature1 = "MDS_1", feature2 = "PC_1")
FeatureScatter(pbmc_small, feature1 = "MDS_1", feature2 = "tSNE_1")


Dimensional Reduction Vignette

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末啤咽,一起剝皮案震驚了整個(gè)濱河市疏橄,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌科汗,老刑警劉巖般卑,帶你破解...
    沈念sama閱讀 217,185評(píng)論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件武鲁,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡蝠检,警方通過(guò)查閱死者的電腦和手機(jī)沐鼠,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,652評(píng)論 3 393
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)叹谁,“玉大人迟杂,你說(shuō)我怎么就攤上這事”灸剑” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,524評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵侧漓,是天一觀的道長(zhǎng)锅尘。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么藤违? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,339評(píng)論 1 293
  • 正文 為了忘掉前任浪腐,我火速辦了婚禮,結(jié)果婚禮上顿乒,老公的妹妹穿的比我還像新娘议街。我一直安慰自己,他們只是感情好璧榄,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,387評(píng)論 6 391
  • 文/花漫 我一把揭開(kāi)白布特漩。 她就那樣靜靜地躺著,像睡著了一般骨杂。 火紅的嫁衣襯著肌膚如雪涂身。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,287評(píng)論 1 301
  • 那天搓蚪,我揣著相機(jī)與錄音蛤售,去河邊找鬼。 笑死妒潭,一個(gè)胖子當(dāng)著我的面吹牛悴能,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播雳灾,決...
    沈念sama閱讀 40,130評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼漠酿,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了佑女?” 一聲冷哼從身側(cè)響起记靡,我...
    開(kāi)封第一講書(shū)人閱讀 38,985評(píng)論 0 275
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎团驱,沒(méi)想到半個(gè)月后摸吠,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,420評(píng)論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡嚎花,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,617評(píng)論 3 334
  • 正文 我和宋清朗相戀三年寸痢,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片紊选。...
    茶點(diǎn)故事閱讀 39,779評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡啼止,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出兵罢,到底是詐尸還是另有隱情献烦,我是刑警寧澤,帶...
    沈念sama閱讀 35,477評(píng)論 5 345
  • 正文 年R本政府宣布卖词,位于F島的核電站巩那,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜即横,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,088評(píng)論 3 328
  • 文/蒙蒙 一噪生、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧东囚,春花似錦跺嗽、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,716評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至惕橙,卻和暖如春瞧甩,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背弥鹦。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,857評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工肚逸, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人彬坏。 一個(gè)月前我還...
    沈念sama閱讀 47,876評(píng)論 2 370
  • 正文 我出身青樓朦促,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親栓始。 傳聞我的和親對(duì)象是個(gè)殘疾皇子务冕,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,700評(píng)論 2 354