hadoop hdp 阿里云 There are 3 datanode(s) running and 3 node(s) are excluded in this operation

阿里云上面安裝hdp服務(wù) hdfs服務(wù),本地 spark stream 消費(fèi)kafka數(shù)據(jù),在hdfs上面設(shè)置保存點(diǎn),但是在寫(xiě)入hdfs的時(shí)候報(bào)錯(cuò)。
There are 3 datanode(s) running and 3 node(s) are excluded in this operation

解決: 在hdfs-site.xml 中加入此配置參數(shù)构灸,使得客戶端往訪問(wèn)hdfs返回datanode地址是主機(jī)名,
在hosts文件本地配置相對(duì)應(yīng)的映射后 才能訪問(wèn)云主機(jī)上面的hadoop 的datanode.

   <property>
       <name>dfs.client.use.datanode.hostname</name>
        <value>true</value>
    </property>
020-08-01 11:38:03,938  ERROR --- [           Executor task launch worker for task 80]  org.apache.spark.executor.Executor                                              (line:   91)  :  Exception in task 3.0 in stage 36.0 (TID 80)
org.apache.hadoop.ipc.RemoteException(java.io.IOException): 
File /user/atguigu/sparkstreaming/checkpoint
/b7e390a6-0a54-4b67-9401-c9c7eb2bcb6d/rdd-22/.part-00003-attempt-0 could only 
be replicated to 0 nodes instead of minReplication (=1).  
There are 3 datanode(s) running and 3 node(s) are excluded in this operation.
    at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1719)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getNewBlockTargets(FSNamesystem.java:3372)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3296)
    at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:850)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:504)
    at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:640)
    at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:982)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2351)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2347)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1869)
    at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2347)

    at org.apache.hadoop.ipc.Client.call(Client.java:1347)
    at org.apache.hadoop.ipc.Client.call(Client.java:1300)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:206)
    at com.sun.proxy.$Proxy10.addBlock(Unknown Source)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.addBlock(ClientNamenodeProtocolTranslatorPB.java:330)
    at sun.reflect.GeneratedMethodAccessor65.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:186)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
    at com.sun.proxy.$Proxy11.addBlock(Unknown Source)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.locateFollowingBlock(DFSOutputStream.java:1226)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.nextBlockOutputStream(DFSOutputStream.java:1078)
    at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:514)
import java.lang
import java.sql.ResultSet

import com.atguigu.qzpoint.util.{DataSourceUtil, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable
import scala.util.Random

object RegisterStreaming {
  private val groupid = "register_group11"

  def main(args: Array[String]): Unit = {
//    System.setProperty("HADOOP_USER_NAME", "root")
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName)
      .set("spark.streaming.kafka.maxRatePerPartition", "100")
      //      .set("spark.streaming.backpressure.enabled", "true")
//            .set("spark.streaming.stopGracefullyOnShutdown", "true")
      .setMaster("local[*]")
    val ssc = new StreamingContext(conf, Seconds(3))

    val sparkContext: SparkContext = ssc.sparkContext
    sparkContext.hadoopConfiguration.set("fs.defaultFS", "hdfs://hadoopha1")
    sparkContext.hadoopConfiguration.set("dfs.nameservices", "hadoopha1")


    val topics = Array("register_topic")
    val kafkaMap: Map[String, Object] = Map[String, Object](
      "bootstrap.servers" -> "hadoop102:6667,hadoop103:6667,hadoop104:6667",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupid,
      "auto.offset.reset" -> "earliest", //sparkstreaming第一次啟動(dòng)岸梨,不丟數(shù)
      //如果是true喜颁,則這個(gè)消費(fèi)者的偏移量會(huì)在后臺(tái)自動(dòng)提交,但是kafka宕機(jī)容易丟失數(shù)據(jù)
      //如果是false曹阔,則需要手動(dòng)維護(hù)kafka偏移量
      "enable.auto.commit" -> (false: lang.Boolean)
    )



    //sparkStreaming對(duì)有狀態(tài)的數(shù)據(jù)操作半开,需要設(shè)定檢查點(diǎn)目錄,然后將狀態(tài)保存到檢查點(diǎn)中
    ssc.checkpoint("/user/atguigu/sparkstreaming/checkpoint")


    //查詢mysql中是否有偏移量
    val sqlProxy = new SqlProxy()
    val offsetMap = new mutable.HashMap[TopicPartition, Long]()
    val client = DataSourceUtil.getConnection
    try {
      sqlProxy.executeQuery(client, "select * from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            val model = new TopicPartition(rs.getString(2), rs.getInt(3))
            val offset = rs.getLong(4)
            offsetMap.put(model, offset)
          }
          rs.close() //關(guān)閉游標(biāo)
        }
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      sqlProxy.shutdown(client)
    }
    //設(shè)置kafka消費(fèi)數(shù)據(jù)的參數(shù)  判斷本地是否有偏移量  有則根據(jù)偏移量繼續(xù)消費(fèi) 無(wú)則重新消費(fèi)
    val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
    } else {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
    }

    //stream原始流無(wú)法進(jìn)行使用和打印赃份,會(huì)報(bào)序列化錯(cuò)誤寂拆,所以需要做下面的map轉(zhuǎn)換
    val resultDStream = stream.filter(item => item.value().split("\t").length == 3).
      mapPartitions(partitions => {
        partitions.map(item => {
          val line = item.value()
          val arr = line.split("\t")
          val app_name = arr(1) match {
            case "1" => "PC"
            case "2" => "APP"
            case _ => "Other"
          }
          (app_name, 1)
        })
      })
    resultDStream.cache()
    //(PC,1),(PC,1),(APP,1),(Other,1),(APP,1),(Other,1),(PC,1),(APP,1)
    //"=================每6s間隔1分鐘內(nèi)的注冊(cè)數(shù)據(jù)================="
//    resultDStream.reduceByKeyAndWindow((x: Int, y: Int) => x + y, Seconds(60), Seconds(6)).print()
    //"========================================================="

    //"+++++++++++++++++++++++實(shí)時(shí)注冊(cè)人數(shù)+++++++++++++++++++++++"http://狀態(tài)計(jì)算
    val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.sum //本批次求和
      val previousCount = state.getOrElse(0) //歷史數(shù)據(jù)
      Some(currentCount + previousCount)
    }
    resultDStream.updateStateByKey(updateFunc).print()
    //"++++++++++++++++++++++++++++++++++++++++++++++++++++++++"

/*        val dsStream = stream.filter(item => item.value().split("\t").length == 3)
              .mapPartitions(partitions =>
                partitions.map(item => {
                  val rand = new Random()
                  val line = item.value()
                  val arr = line.split("\t")
                  val app_id = arr(1)
                  (rand.nextInt(3) + "_" + app_id, 1)
                }))
            val result = dsStream.reduceByKey(_ + _)
            result.map(item => {
              val appid = item._1.split("_")(1)
              (appid, item._2)
            }).reduceByKey(_ + _).print()*/

    //處理完 業(yè)務(wù)邏輯后 手動(dòng)提交offset維護(hù)到本地 mysql中
    stream.foreachRDD(rdd => {

      val sqlProxy = new SqlProxy()
      val client = DataSourceUtil.getConnection
      try {
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (or <- offsetRanges) {
          sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
            Array(groupid, or.topic, or.partition.toString, or.untilOffset))
        }
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(client)
      }
    })


    ssc.start()
    ssc.awaitTermination()
  }

}
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市抓韩,隨后出現(xiàn)的幾起案子纠永,更是在濱河造成了極大的恐慌,老刑警劉巖谒拴,帶你破解...
    沈念sama閱讀 217,277評(píng)論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件尝江,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡英上,警方通過(guò)查閱死者的電腦和手機(jī)炭序,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,689評(píng)論 3 393
  • 文/潘曉璐 我一進(jìn)店門(mén)啤覆,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人惭聂,你說(shuō)我怎么就攤上這事窗声。” “怎么了彼妻?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,624評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵嫌佑,是天一觀的道長(zhǎng)豆茫。 經(jīng)常有香客問(wèn)我侨歉,道長(zhǎng),這世上最難降的妖魔是什么揩魂? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,356評(píng)論 1 293
  • 正文 為了忘掉前任幽邓,我火速辦了婚禮,結(jié)果婚禮上火脉,老公的妹妹穿的比我還像新娘牵舵。我一直安慰自己,他們只是感情好倦挂,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,402評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布畸颅。 她就那樣靜靜地躺著,像睡著了一般方援。 火紅的嫁衣襯著肌膚如雪没炒。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,292評(píng)論 1 301
  • 那天犯戏,我揣著相機(jī)與錄音送火,去河邊找鬼。 笑死先匪,一個(gè)胖子當(dāng)著我的面吹牛种吸,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播呀非,決...
    沈念sama閱讀 40,135評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼坚俗,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了岸裙?” 一聲冷哼從身側(cè)響起坦冠,我...
    開(kāi)封第一講書(shū)人閱讀 38,992評(píng)論 0 275
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎哥桥,沒(méi)想到半個(gè)月后辙浑,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,429評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡拟糕,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,636評(píng)論 3 334
  • 正文 我和宋清朗相戀三年判呕,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了倦踢。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,785評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡侠草,死狀恐怖辱挥,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情边涕,我是刑警寧澤晤碘,帶...
    沈念sama閱讀 35,492評(píng)論 5 345
  • 正文 年R本政府宣布,位于F島的核電站功蜓,受9級(jí)特大地震影響园爷,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜式撼,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,092評(píng)論 3 328
  • 文/蒙蒙 一童社、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧著隆,春花似錦扰楼、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,723評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至浦辨,卻和暖如春蹬竖,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背荤牍。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,858評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工案腺, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人康吵。 一個(gè)月前我還...
    沈念sama閱讀 47,891評(píng)論 2 370
  • 正文 我出身青樓劈榨,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親晦嵌。 傳聞我的和親對(duì)象是個(gè)殘疾皇子同辣,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,713評(píng)論 2 354