高數(shù)——多元函數(shù)的定義及極限——學(xué)習(xí)筆記(31)

之前我們學(xué)習(xí)的導(dǎo)數(shù)灼舍、微分和積分都是針對(duì)一元函數(shù)的吼和,也就是函數(shù)只依賴一個(gè)變量,但是在我們今后遇到的實(shí)際問(wèn)題中骑素,更多出現(xiàn)的卻是要考慮多個(gè)變量的情況炫乓,這是我們就要用多元函數(shù)來(lái)表示它們之間的關(guān)系了。

比如地球表面上一點(diǎn)的溫度 T 同時(shí)依賴于緯度 x 和經(jīng)度 y献丑,可以用一個(gè)二元函數(shù) T=f(x,y) 來(lái)表示末捣。

? 和一元函數(shù)一樣,二元函數(shù)也是有定義域和值域的创橄,一元函數(shù)的定義域是 軸上一個(gè)“線段”上的點(diǎn)的集合箩做,而二元函數(shù)的定義域是 x 和 y 取值范圍所組成的一個(gè)平面區(qū)域內(nèi)的點(diǎn)的集合。

設(shè)平面點(diǎn)集D包含于R2,若按照某對(duì)應(yīng)法則f,D中每一點(diǎn)P(x,y)都有唯一的實(shí)數(shù)z與之對(duì)應(yīng),則稱f為在D上的二元函數(shù).

且稱D為f的定義域,P對(duì)應(yīng)的z為f在點(diǎn)P的函數(shù)值,記作z=f(x,y);全體函數(shù)值的集合稱為f的值域.

一般來(lái)說(shuō),二元函數(shù)是空間的曲面,如雙曲拋物面(馬鞍形)z=xy.

二元函數(shù)可以認(rèn)為是有兩個(gè)自變量一個(gè)因變量妥畏,可以認(rèn)為是三維的函數(shù)邦邦,空間函數(shù)。

圖片發(fā)自簡(jiǎn)書App


求定義域要公式?

其實(shí)很簡(jiǎn)單的呀!

跟一元的差不多

常見的:

(1)根號(hào)內(nèi)大于等于0

(2)分母不等于0

(3)真數(shù)大于0

(4)實(shí)際情況

等..

比如:

f(x,y)=根號(hào)(x+y)

定義域是:

x+y>=0



怎么求二元函數(shù)的定義域啊?

z=x-y怎么求

這個(gè)不要求定義域的,因?yàn)槭荝,實(shí)數(shù)集

很簡(jiǎn)單啊,就是看是否有意義,讓它又意義就行

像分母不能為0阿,對(duì)數(shù)應(yīng)取正阿,等等

跟一元函數(shù)是一樣的,z=x-y的定義域就是整個(gè)XOY平面R^2

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末醉蚁,一起剝皮案震驚了整個(gè)濱河市圃酵,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌馍管,老刑警劉巖,帶你破解...
    沈念sama閱讀 217,826評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件薪韩,死亡現(xiàn)場(chǎng)離奇詭異确沸,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)俘陷,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,968評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門罗捎,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人拉盾,你說(shuō)我怎么就攤上這事桨菜。” “怎么了捉偏?”我有些...
    開封第一講書人閱讀 164,234評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵倒得,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我夭禽,道長(zhǎng)霞掺,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,562評(píng)論 1 293
  • 正文 為了忘掉前任讹躯,我火速辦了婚禮菩彬,結(jié)果婚禮上缠劝,老公的妹妹穿的比我還像新娘。我一直安慰自己骗灶,他們只是感情好惨恭,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,611評(píng)論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著耙旦,像睡著了一般脱羡。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上母廷,一...
    開封第一講書人閱讀 51,482評(píng)論 1 302
  • 那天轻黑,我揣著相機(jī)與錄音,去河邊找鬼琴昆。 笑死氓鄙,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的业舍。 我是一名探鬼主播抖拦,決...
    沈念sama閱讀 40,271評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼舷暮!你這毒婦竟也來(lái)了态罪?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,166評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤下面,失蹤者是張志新(化名)和其女友劉穎复颈,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體沥割,經(jīng)...
    沈念sama閱讀 45,608評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡耗啦,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,814評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了机杜。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片帜讲。...
    茶點(diǎn)故事閱讀 39,926評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖椒拗,靈堂內(nèi)的尸體忽然破棺而出似将,到底是詐尸還是另有隱情,我是刑警寧澤蚀苛,帶...
    沈念sama閱讀 35,644評(píng)論 5 346
  • 正文 年R本政府宣布在验,位于F島的核電站,受9級(jí)特大地震影響堵未,放射性物質(zhì)發(fā)生泄漏译红。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,249評(píng)論 3 329
  • 文/蒙蒙 一兴溜、第九天 我趴在偏房一處隱蔽的房頂上張望侦厚。 院中可真熱鬧耻陕,春花似錦、人聲如沸刨沦。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,866評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)想诅。三九已至召庞,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間来破,已是汗流浹背篮灼。 一陣腳步聲響...
    開封第一講書人閱讀 32,991評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留徘禁,地道東北人诅诱。 一個(gè)月前我還...
    沈念sama閱讀 48,063評(píng)論 3 370
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像送朱,于是被迫代替她去往敵國(guó)和親娘荡。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,871評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • 第2章 基本語(yǔ)法 2.1 概述 基本句法和變量 語(yǔ)句 JavaScript程序的執(zhí)行單位為行(line)驶沼,也就是一...
    悟名先生閱讀 4,149評(píng)論 0 13
  • Lua 5.1 參考手冊(cè) by Roberto Ierusalimschy, Luiz Henrique de F...
    蘇黎九歌閱讀 13,797評(píng)論 0 38
  • —你這樣的姑娘怎么就沒(méi)有男朋友呢炮沐? —因?yàn)橛X(jué)得自己丑啊… 1。 她說(shuō)回怜,回程的火車好無(wú)聊大年,想跟我說(shuō)說(shuō)話。我說(shuō)玉雾,好呀鲜戒,...
    隨藝藝藝閱讀 3,775評(píng)論 4 5
  • 懷著激動(dòng)的心情啟動(dòng)班班共讀 閉眼,靜默30秒抹凳,讓內(nèi)心平靜下來(lái)。 約定大花臉?lè)?hào) 第一次做魚骨頭
    琪琪小島閱讀 232評(píng)論 0 0
  • 今天又是一個(gè)讓自己開心快樂(lè)的日子伦腐,我參加的12天語(yǔ)言美學(xué)訓(xùn)練營(yíng)今天開營(yíng)了赢底!聽了宇彤老師的第一課,原來(lái)自己的說(shuō)話生硬...
    小芫閱讀 239評(píng)論 0 1