23娱挨、 在Plot(繪圖)部分選擇SubCont01:Sub_Debutanizer變量列表以顯示所有與子控制器問題相關的變量的圖苫拍。
24鱼辙、 運行200步仿真疹娶,并放大到250步我們將獲得:
此圖顯示了在抗干擾方面令人滿意的行為海诲。然而在圖的右半邊需要更快的優(yōu)化职车,因為Duty(能源)最小化響應較為緩慢蜡吧。
25茬底、 返回到方案編輯器中并將Economic Function Tracking Filter(經(jīng)濟函數(shù)跟蹤濾波)(在General選項卡中)修改為1.0搭儒。這使得經(jīng)濟優(yōu)化跟蹤速度大大加快穷当。
26提茁、 現(xiàn)在在操作變量的權重方面進行一些微調(diào),例如馁菜,回流的動作需要給與更大的處罰茴扁。
27、 回到情景編輯器中并設置一個事件改變回流權重汪疮。如果你想從仿真開始時采取這一調(diào)整峭火,在控制器本身的子控制器節(jié)點下的Weight(權重)標簽修改權重,并重新建立控制器智嚷。
28卖丸、 回到仿真圖觀察閉環(huán)過程行為是如何變化的。
帶回家的消息
SMOCPro 環(huán)境提供給用戶快速編譯模型從而搭建控制器盏道,以及在離線仿真環(huán)境中仿真的能力稍浆。軟件的控制器節(jié)點可被用于定義子控制器,修改控制器參數(shù)摇天,定義經(jīng)濟優(yōu)化函數(shù)以及指定所需的子控制器行為粹湃。仿真節(jié)點可用來測試當控制器投在線時可能遇到的較為廣泛的各種情況。
原文:
- In the Plot section select the SubCont01:Sub_Debutanizer variable list to have the plot display all relevant variables related to the sub-controller problem.
- Run 200 steps of simulation and zoom in for 250 steps to get:
This plot shows satisfactory behavior in disturbance rejection. However, faster optimization is desired since the Duty minimization is slow in the second half of the plot. - Go back to the scenario editor and change the Economic Function Tracking Filter (in the General tab) to 1.0. This results in much faster tracking of the economic optimum.
- Now perform some fine-tuning on the manipulated variable weights, for example, the Reflux moves could be penalized more.
- Go back to the scenario editor and set an event to change the Reflux Weight. If you want this tuning to act from the simulation start, modify this Weight in the Weight tab under the sub-controller node of the controller itself and (re)build the controller.
- Go back into the simulation plot to see how the behavior of the closed loop process has changed.
Take Home Message
The SMOCPro environment provides the user the ability to quickly go from compiling a model to building a controller and simulating it on an offline simulation environment. The Controller node of the software can be used to define sub-controllers, modify controller tuning, define economic optimization functions as well as specify the desired sub-controller behavior. The simulation node can be used to test a wide spectrum of circumstances that may be encountered by the controller once it is implemented online.
案例2:反應器(加氫裝置)質量控制
(\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\Tutorial2_ReactorCL.wsp)
(\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\Tutorial2_ReactorPID.wsp)
下圖所示為反應器控制的簡化工藝流程圖泉坐。流程的進料在爐中進行加熱,并輸送進發(fā)生反應的反應器裳仆。反應通過反應器進料入口溫度(TC1)和急冷氣體流(FC)來控制腕让。該流程的目的是獲得一定質量的產(chǎn)物,在反應器出口流股中進行檢測(QI)歧斟。同時反應器溫度(Temperature)不應超過一個特定的最大值纯丸。
Figure -2 Reactor flow scheme.
圖2:反應器流股方案
因為燃料氣體性質和壓力控制器設定的變化,爐的出口溫度有一些不可忽略的變化静袖。溫度控制器最后會拒絕這些觉鼻;但需要適當?shù)卮_定變化的瞬時效應以執(zhí)行緊急的反應控制。
原文:
**Case 2: Reactor (Hydrotreater Type) Quality Control **
(\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\Tutorial2_ReactorCL.wsp)
(\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\Tutorial2_ReactorPID.wsp)
The figure below shows a simplified process flow scheme for reactor control. The process feed is heated in a furnace and passed on to a reactor where a reaction takes place. The reaction is controlled by the feed inlet temperature of the reactor (TC1) and by a quench gas flow (FC).
The objective of the process is to obtain a product of a certain quality, measured at the reactor outlet stream (QI). Also, the temperature in the reactor (Temperature) should not exceed a certain maximum value.
Because of variations in the properties of the fuel gas and the settings of the pressure controller, the furnace outlet temperature can have some non-negligible variations. The temperature controller ultimately rejects these; but the transient effect of the variations needs to be properly identified to perform tight reaction control.
2016.5.14補2016.5.10