Algorithms and online shopping

For many of us,online shopping has made the process of purchasing goods a far simpler and more fluid process.No longer do we have to head to the shops to browse and peruse various objects,wandering round endless aisles,before setting for the first thing we see.These days we find the item we want or need online,click on it,check out the descriptions and user reviews.If it fills our bills,we send it to the basket and pay.There seem to be a wealth of options at our fingertips.But how do we know the option pop up in front of us are the best deals.And how might algorithms help or hind us.

Algorithms,simply put,are mathematically instructions which tell the computer how to solve the problems,when shopping is involved,what is the problem they solve?

Well,algorithms instruct people which adverts to show and which products the user is most likely to splash cash on.By analysing things you previously bought and looked at,the algorithms can predict what goods we're most likely to be enticed by.

For some people,the idea of something guessing your preference could sound a bit intimidating.

But first,let's look at the positives.

Time is an important thing-we don't want to waste too much of.

The algorithms tell computers to show adverts for goods we are interested in,it can save us a lot of time to sifting though things and services those don't match our criteria.

It can help us find the best deal.

However,there are some people who have concerns about the impact of the algorithms on shopping experience.

It's possible that algorithms may only select options from a limited number of brands拖吼,or may favour products from certain companies.

There are also concerns that we aren't always show the cheapest or best deal,even though that's what we are searching for.

Finally,some algorithms generate ads which tell them there are only a few limited items you are interested in left挚币。

They might just be there to manipulate you.

So,the takeway from this is that? algothms are here to stay,it's wise to know they exist.

Whenever you are shopping,be it online or off,make sure to shop around for the best deals.

The first thing you see might not always be the best for you.

物品的同義詞 products goods items things

peruse 細(xì)讀研讀

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末鸵赫,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌胞锰,老刑警劉巖爽茴,帶你破解...
    沈念sama閱讀 218,451評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件葬凳,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡室奏,警方通過查閱死者的電腦和手機(jī)火焰,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,172評(píng)論 3 394
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來胧沫,“玉大人昌简,你說我怎么就攤上這事占业。” “怎么了纯赎?”我有些...
    開封第一講書人閱讀 164,782評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵谦疾,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我犬金,道長(zhǎng)念恍,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,709評(píng)論 1 294
  • 正文 為了忘掉前任佑附,我火速辦了婚禮樊诺,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘音同。我一直安慰自己词爬,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,733評(píng)論 6 392
  • 文/花漫 我一把揭開白布权均。 她就那樣靜靜地躺著顿膨,像睡著了一般。 火紅的嫁衣襯著肌膚如雪叽赊。 梳的紋絲不亂的頭發(fā)上恋沃,一...
    開封第一講書人閱讀 51,578評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音必指,去河邊找鬼囊咏。 笑死,一個(gè)胖子當(dāng)著我的面吹牛塔橡,可吹牛的內(nèi)容都是我干的梅割。 我是一名探鬼主播,決...
    沈念sama閱讀 40,320評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼葛家,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼户辞!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起癞谒,我...
    開封第一講書人閱讀 39,241評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤萍恕,失蹤者是張志新(化名)和其女友劉穎战坤,沒想到半個(gè)月后效览,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體向图,經(jīng)...
    沈念sama閱讀 45,686評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,878評(píng)論 3 336
  • 正文 我和宋清朗相戀三年迅栅,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了殊校。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,992評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡读存,死狀恐怖为流,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情让簿,我是刑警寧澤敬察,帶...
    沈念sama閱讀 35,715評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站尔当,受9級(jí)特大地震影響莲祸,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜椭迎,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,336評(píng)論 3 330
  • 文/蒙蒙 一锐帜、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧畜号,春花似錦缴阎、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,912評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至痹升,卻和暖如春建炫,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背疼蛾。 一陣腳步聲響...
    開封第一講書人閱讀 33,040評(píng)論 1 270
  • 我被黑心中介騙來泰國(guó)打工肛跌, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人察郁。 一個(gè)月前我還...
    沈念sama閱讀 48,173評(píng)論 3 370
  • 正文 我出身青樓衍慎,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親绳锅。 傳聞我的和親對(duì)象是個(gè)殘疾皇子西饵,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,947評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容