133. Clone Graph

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.

OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}.
The graph has a total of three nodes, and therefore contains three parts as separated by #.
First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
Second node is labeled as 1. Connect node 1 to node 2.
Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.
Visually, the graph looks like the following:

       1
      / \
     /   \
    0 --- 2
         / \
         \_/

Solution1:遞歸 DFS + hashmap

思路:

Example:
          1
        /    \
       0 ---  2 --
              |   |
               ---

(1)隨著DFS遍歷src_Graph激况,對每一個(gè)結(jié)點(diǎn)src_node挡逼,clone一個(gè)cloned_node晤硕,
然后對src_node的src_node_neighbor結(jié)點(diǎn)們遞歸重復(fù)相同的clone過程 并將cloned_node_neighbors link到cloned_node中。
(2)在遍歷的過程中佑稠,為避免重復(fù)clone,將已經(jīng)cloned的結(jié)點(diǎn)保存到hashmap中, src_node -> cloned_node埃脏,
這樣一來在遍歷中對于src_node若在map中已經(jīng)存在,則map.get(src_node)即get出已經(jīng)clone過的cloned_node,直接link(避免新建再clone)揽惹。
(3)依照題意,Nodes are labeled uniquely四康,所以此題map其實(shí)可以是src_node_label -> cloned_node_label搪搏,
但為了滿足若不同nodes的label相同的情況,這里map是src_node -> cloned_node
(4)另外闪金,遍歷方式也可以是BFS疯溺,利用queue實(shí)現(xiàn),其他過程不變哎垦。

Time Complexity: O(N) Space Complexity: O(N)

Solution2:stack DFS + hashmap

思路一致囱嫩,用stack使得訪問順序不同,深度優(yōu)先

Solution3:queue BFS + hashmap (not finished)

思路一致漏设,用queue使得訪問順序不同墨闲,廣度優(yōu)先

Solution1 Code:

public class Solution {
    private HashMap<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap<UndirectedGraphNode, UndirectedGraphNode>();

    public UndirectedGraphNode cloneGraph(UndirectedGraphNode src_node) {
        return clone(src_node);
    }

    private UndirectedGraphNode clone (UndirectedGraphNode src_node) {
        if(src_node == null)
            return null;

        if(map.containsKey(src_node))
            return map.get(src_node);

        //clone clone_node from src_node
        UndirectedGraphNode cloned_node = new UndirectedGraphNode(src_node.label);
        map.put(src_node, cloned_node);
        for(UndirectedGraphNode src_node_neighbor: src_node.neighbors) {
            cloned_node.neighbors.add(clone(src_node_neighbor));
        }
        return cloned_node;
    }
}

Solution2 Code:

public class Solution {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if (node == null) return null;
        HashMap<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap();    // src_node -> cloned_node
        Stack<UndirectedGraphNode> stack = new Stack<UndirectedGraphNode>();   // for DfS
        
        // first node
        UndirectedGraphNode first_cloned_node = new UndirectedGraphNode(node.label);
        map.put(node, first_cloned_node); //add first node to HashMap
        
        stack.push(node);        
        while (!stack.isEmpty()) { 
            UndirectedGraphNode src_node = stack.pop();
            UndirectedGraphNode cloned_node = map.get(src_node);
            for(UndirectedGraphNode neighbor : src_node.neighbors) {
                UndirectedGraphNode cloned_neighbor;
                if(map.containsKey(neighbor)) {
                    // already visited
                    cloned_neighbor = map.get(neighbor);
                }
                else {
                    // first time visit
                    cloned_neighbor = new UndirectedGraphNode(neighbor.label);
                    map.put(neighbor, cloned_neighbor);
                    stack.push(neighbor);
                }
                cloned_node.neighbors.add(cloned_neighbor);
            }
        }
        return first_cloned_node;
    }
}

Solution3 Code:

public class Solution {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if (node == null) return null;
        HashMap<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap();    // src_node -> cloned_node
        Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>();   // for BfS
        
        // first node
        UndirectedGraphNode first_cloned_node = new UndirectedGraphNode(node.label);
        map.put(node, first_cloned_node); //add first node to HashMap
        
        queue.offer(node);        
        while (!queue.isEmpty()) { 
            UndirectedGraphNode src_node = queue.poll();
            UndirectedGraphNode cloned_node = map.get(src_node);
            for(UndirectedGraphNode neighbor : src_node.neighbors) {
                UndirectedGraphNode cloned_neighbor;
                if(map.containsKey(neighbor)) {
                    // already visited
                    cloned_neighbor = map.get(neighbor);
                }
                else {
                    // first time visit
                    cloned_neighbor = new UndirectedGraphNode(neighbor.label);
                    map.put(neighbor, cloned_neighbor);
                    queue.add(neighbor);
                }
                cloned_node.neighbors.add(cloned_neighbor);
            }
        }
        return first_cloned_node;
    }
}

Tag_Round1 Code:

public class Solution {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if(node == null) return null;
        
        Map<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap<>();
        UndirectedGraphNode copy_node = new UndirectedGraphNode(node.label);
        map.put(node, copy_node);
        
        dfs_clone(node, map);
        
        return copy_node;
    }
    
    private void dfs_clone(UndirectedGraphNode node, Map<UndirectedGraphNode, UndirectedGraphNode> map) {
        
        UndirectedGraphNode copy_node = map.get(node);
        for(int i = 0; i < node.neighbors.size(); i++) {
            UndirectedGraphNode next = node.neighbors.get(i);
            if(!map.containsKey(next)) { // unvisited
                UndirectedGraphNode copy_next = new UndirectedGraphNode(next.label);
                map.put(next, copy_next);
                dfs_clone(next, map);
            }
            UndirectedGraphNode copy_next = map.get(next);
            copy_node.neighbors.add(copy_next);   
        
        }
    }
}
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市郑口,隨后出現(xiàn)的幾起案子鸳碧,更是在濱河造成了極大的恐慌,老刑警劉巖犬性,帶你破解...
    沈念sama閱讀 219,270評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件瞻离,死亡現(xiàn)場離奇詭異,居然都是意外死亡仔夺,警方通過查閱死者的電腦和手機(jī)琐脏,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,489評論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來缸兔,“玉大人日裙,你說我怎么就攤上這事《杳郏” “怎么了昂拂?”我有些...
    開封第一講書人閱讀 165,630評論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長抛猖。 經(jīng)常有香客問我格侯,道長,這世上最難降的妖魔是什么财著? 我笑而不...
    開封第一講書人閱讀 58,906評論 1 295
  • 正文 為了忘掉前任联四,我火速辦了婚禮,結(jié)果婚禮上撑教,老公的妹妹穿的比我還像新娘朝墩。我一直安慰自己,他們只是感情好伟姐,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,928評論 6 392
  • 文/花漫 我一把揭開白布收苏。 她就那樣靜靜地躺著亿卤,像睡著了一般。 火紅的嫁衣襯著肌膚如雪鹿霸。 梳的紋絲不亂的頭發(fā)上排吴,一...
    開封第一講書人閱讀 51,718評論 1 305
  • 那天,我揣著相機(jī)與錄音懦鼠,去河邊找鬼钻哩。 笑死,一個(gè)胖子當(dāng)著我的面吹牛肛冶,可吹牛的內(nèi)容都是我干的憋槐。 我是一名探鬼主播,決...
    沈念sama閱讀 40,442評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼淑趾,長吁一口氣:“原來是場噩夢啊……” “哼阳仔!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起扣泊,我...
    開封第一講書人閱讀 39,345評論 0 276
  • 序言:老撾萬榮一對情侶失蹤近范,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后延蟹,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體评矩,經(jīng)...
    沈念sama閱讀 45,802評論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,984評論 3 337
  • 正文 我和宋清朗相戀三年阱飘,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了斥杜。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,117評論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡沥匈,死狀恐怖蔗喂,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情高帖,我是刑警寧澤缰儿,帶...
    沈念sama閱讀 35,810評論 5 346
  • 正文 年R本政府宣布,位于F島的核電站散址,受9級特大地震影響乖阵,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜预麸,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,462評論 3 331
  • 文/蒙蒙 一瞪浸、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧吏祸,春花似錦对蒲、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,011評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至床估,卻和暖如春含滴,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背丐巫。 一陣腳步聲響...
    開封第一講書人閱讀 33,139評論 1 272
  • 我被黑心中介騙來泰國打工谈况, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人递胧。 一個(gè)月前我還...
    沈念sama閱讀 48,377評論 3 373
  • 正文 我出身青樓碑韵,卻偏偏與公主長得像,于是被迫代替她去往敵國和親缎脾。 傳聞我的和親對象是個(gè)殘疾皇子祝闻,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,060評論 2 355

推薦閱讀更多精彩內(nèi)容