“氣泡圖”這個(gè)名字聽著就很可愛是不是!今天讓我們來看看這個(gè)氣泡圖長(zhǎng)什么樣,可以展示什么樣的數(shù)據(jù),以及如何用R作圖。
什么是氣泡圖
氣泡圖(Bubble Plot)就是由一個(gè)個(gè)像氣泡元素組成的圖伯诬,和普通的散點(diǎn)圖不同,該圖可以展示三維甚至四維信息巫财,如下圖:點(diǎn)的位置即其橫縱坐標(biāo)分別代表了Weight和Height盗似,氣泡的大小代表了Age,顏色代表了不同個(gè)體平项。
再舉幾個(gè)例子:
上面用了不同形式展示了GO或其他富集的結(jié)果桥言。上圖和右下圖中萌踱,我們用顏色代表GO的類別,用橫縱坐標(biāo)代表p-value和z-score号阿,用大小代表富集的基因Count并鸵。左下圖我們用顏色代表p-value,用大小代表GeneCount扔涧,橫坐標(biāo)代表GeneRatio园担,縱坐標(biāo)代表具體的類別。
從上述例子中可以發(fā)現(xiàn)用氣泡圖我們能展示更多的數(shù)據(jù)信息枯夜。隨著多組學(xué)研究的涌現(xiàn)弯汰,我們急需在同一張圖表理展現(xiàn)多維的數(shù)據(jù),氣泡圖就是一個(gè)不錯(cuò)的選擇湖雹。
怎么做氣泡圖
1)需要什么格式的數(shù)據(jù)
根據(jù)最終想要在氣泡圖上展示數(shù)據(jù)的維度以確定數(shù)據(jù)的格式咏闪。
本次用一個(gè)來自于GOplo包的數(shù)據(jù)EC,該數(shù)據(jù)為RNA-seq的下游分析數(shù)據(jù)摔吏。
該數(shù)據(jù)標(biāo)準(zhǔn)化處理后進(jìn)行統(tǒng)計(jì)分析以確定了差異表達(dá)基因鸽嫂。 使用DAVID功能注釋工具對(duì)差異表達(dá)基因(調(diào)整后的p值<0.05)進(jìn)行基因注釋富集分析。
library(GOplot)
data(EC)
head(EC$david)
## Category ID Term
## 1 BP GO:0007507 heart development
## 2 BP GO:0001944 vasculature development
## 3 BP GO:0001568 blood vessel development
## 4 BP GO:0048729 tissue morphogenesis
## 5 BP GO:0048514 blood vessel morphogenesis
## 6 BP GO:0051336 regulation of hydrolase activity
## Genes
## 1 DLC1, NRP2, NRP1, EDN1, PDLIM3, GJA1, TTN, GJA5, ZIC3, TGFB2, CERKL, GATA6, COL4A3BP, GAB1, SEMA3C, MKL2, SLC22A5, MB, PTPRJ, RXRA, VANGL2, MYH6, TNNT2, HHEX, MURC, MIB1, FOXC2, FOXC1, ADAM19, MYL2, TCAP, EGLN1, SOX9, ITGB1, CHD7, HEXIM1, PKD2, NFATC4, PCSK5, ACTC1, TGFBR2, NF1, HSPG2, SMAD3, TBX1, TNNI3, CSRP3, FOXP1, KCNJ8, PLN, TSC2, ATP6V0A1, TGFBR3, HDAC9
## 2 GNA13, ACVRL1, NRP1, PGF, IL18, LEPR, EDN1, GJA1, FOXO1, GJA5, TGFB2, WARS, CERKL, APOE, CXCR4, ANG, SEMA3C, NOS2, MKL2, FGF2, RAPGEF1, PTPRJ, RECK, EFNB2, VASH1, PNPLA6, THY1, MIB1, NUS1, FOXC2, FOXC1, CAV1, CDH2, MEIS1, WT1, CDH5, PTK2, FBXW8, CHD7, PLCD1, PLXND1, FIGF, PPAP2B, MAP2K1, TBX4, TGFBR2, NF1, TBX1, TNNI3, LAMA4, MEOX2, ECSCR, HBEGF, AMOT, TGFBR3, HDAC7
## 3 GNA13, ACVRL1, NRP1, PGF, IL18, LEPR, EDN1, GJA1, FOXO1, GJA5, TGFB2, WARS, CERKL, APOE, CXCR4, ANG, SEMA3C, NOS2, MKL2, FGF2, RAPGEF1, PTPRJ, RECK, VASH1, PNPLA6, THY1, MIB1, NUS1, FOXC2, FOXC1, CAV1, CDH2, MEIS1, WT1, CDH5, PTK2, FBXW8, CHD7, PLCD1, PLXND1, FIGF, PPAP2B, MAP2K1, TBX4, TGFBR2, NF1, TBX1, TNNI3, LAMA4, MEOX2, ECSCR, HBEGF, AMOT, TGFBR3, HDAC7
## 4 DLC1, ENAH, NRP1, PGF, ZIC2, TGFB2, CD44, ILK, SEMA3C, RET, AR, RXRA, VANGL2, LEF1, TNNT2, HHEX, MIB1, NCOA3, FOXC2, FOXC1, TGFB1I1, WNT5A, COBL, BBS4, FGFR3, TNC, BMPR2, CTNND1, EGLN1, NR3C1, SOX9, TCF7L1, IGF1R, FOXQ1, MACF1, HOXA5, BCL2, PLXND1, CAR2, ACTC1, TBX4, SMAD3, FZD3, SHANK3, FZD6, HOXB4, FREM2, TSC2, ZIC5, TGFBR3, APAF1
## 5 GNA13, CAV1, ACVRL1, NRP1, PGF, IL18, LEPR, EDN1, GJA1, CDH2, MEIS1, WT1, TGFB2, WARS, PTK2, CERKL, APOE, CXCR4, ANG, SEMA3C, PLCD1, NOS2, MKL2, PLXND1, FIGF, FGF2, PTPRJ, TGFBR2, TBX4, NF1, TBX1, TNNI3, PNPLA6, VASH1, THY1, NUS1, MEOX2, ECSCR, AMOT, HBEGF, FOXC2, FOXC1, HDAC7
## 6 CAV1, XIAP, AGFG1, ADORA2A, TNNC1, TBC1D9, LEPR, ABHD5, EDN1, ASAP2, ASAP3, SMAP1, TBC1D12, ANG, TBC1D14, MTCH1, TBC1D13, TBC1D4, TBC1D30, DHCR24, HIP1, VAV3, NOS1, NF1, MYH6, RICTOR, TBC1D22A, THY1, PLCE1, RNF7, NDEL1, CHML, IFT57, ACAP2, TSC2, ERN1, APAF1, ARAP3, ARAP2, ARAP1, HTR2A, F2R
## adj_pval
## 1 0.000002170
## 2 0.000010400
## 3 0.000007620
## 4 0.000119000
## 5 0.000720000
## 6 0.001171166
head(EC$genelist)
## ID logFC AveExpr t P.Value adj.P.Val B
## 1 Slco1a4 6.645388 1.2168670 88.65515 1.32e-18 2.73e-14 29.02715
## 2 Slc19a3 6.281525 1.1600468 69.95094 2.41e-17 2.49e-13 27.62917
## 3 Ddc 4.483338 0.8365231 65.57836 5.31e-17 3.65e-13 27.18476
## 4 Slco1c1 6.469384 1.3558865 59.87613 1.62e-16 8.34e-13 26.51242
## 5 Sema3c 5.515630 2.3252117 58.53141 2.14e-16 8.81e-13 26.33626
## 6 Slc38a3 4.761755 0.9218670 54.11559 5.58e-16 1.76e-12 25.70308
circ <- circle_dat(EC$david, EC$genelist)
由于本次將使用兩個(gè)包一個(gè)是GOplot專門用于轉(zhuǎn)錄組數(shù)據(jù)的下游展示征讲,還有一個(gè)是我們常用的畫圖包ggplot2据某,需要注意的是用于ggplot2的作圖數(shù)據(jù)還要基于circ略作修改,具體見下文诗箍。
2)如何作圖
GOplot包提供了直接做氣泡圖的方法:
GOBubble(circ, labels = 4)
#labels: Sets a threshold for the displayed labels. The threshold refers to the -log(adjusted p-value) (default=5)
略調(diào)整參數(shù)之后可以對(duì)圖的布局癣籽、顏色等進(jìn)行調(diào)整:
GOBubble(circ, title = 'Bubble plot', colour = c('orange', 'darkred', 'gold'), display = 'multiple', labels = 3)
然后,我們來看一看用常見的包ggplot2應(yīng)該如何做該圖滤祖。
首先我們要對(duì)數(shù)據(jù)處理一下筷狼,剔除一些不必要的信息:
circ2<-circ[!duplicated(circ$ID),-5]
head(circ2)
## category ID term count logFC adj_pval zscore
## 1 BP GO:0007507 heart development 54 -0.9707875 0.000002170 -0.8164966
## 55 BP GO:0001944 vasculature development 56 0.3711599 0.000010400 -0.8017837
## 111 BP GO:0001568 blood vessel development 55 0.3711599 0.000007620 -0.6741999
## 166 BP GO:0048729 tissue morphogenesis 51 -0.9707875 0.000119000 -0.1400280
## 217 BP GO:0048514 blood vessel morphogenesis 43 0.3711599 0.000720000 -0.1524986
## 260 BP GO:0051336 regulation of hydrolase activity 42 -0.9567264 0.001171166 0.3086067
library(ggplot2)
library(RColorBrewer)
library(ggrepel)
ggplot(circ2,aes(x=zscore,y=-log10(adj_pval)))+
geom_point(aes(size=count,color=category),alpha=0.6)+
scale_size(range=c(1,12))+
scale_color_brewer(palette = "Accent")+
theme_bw()+
theme(
#legend.position = c("none")
)+
geom_text_repel(
data = circ2[-log10(circ2$adj_pval)>3,],
aes(label = ID),
size = 3,
segment.color = "black", show.legend = FALSE )
稍作改變,去除圖例添加facet匠童。
library(ggplot2)
library(RColorBrewer)
library(ggrepel)
ggplot(circ2,aes(x=zscore,y=-log10(adj_pval)))+
geom_point(aes(size=count,color=category),alpha=0.6)+
scale_size(range=c(1,12))+
scale_color_brewer(palette = "Accent")+
theme_bw()+
theme(
legend.position = c("none")
)+
geom_text_repel(
data = circ2[-log10(circ2$adj_pval)>3,],
aes(label = ID),
size = 3,
segment.color = "black", show.legend = FALSE )+
facet_grid(.~category)
往期 R數(shù)據(jù)可視化 分享
R數(shù)據(jù)可視化6: 面積圖 Area Chart
R數(shù)據(jù)可視化5: 熱圖 Heatmap
R數(shù)據(jù)可視化4: PCA和PCoA圖
R數(shù)據(jù)可視化3: 直方/條形圖
R數(shù)據(jù)可視化2: 箱形圖 Boxplot
R數(shù)據(jù)可視化1: 火山圖