GAN Lecture 2
Conditional Generation by GAN

Algorithm
In each traing iteration:
- Sample m positive examples
from database
- Sample m noise samples
from a distribution
- Obtaining generated data
,
- Sample m objects
from database
- Update discriminator parameters
to maximize
Learning D
- Sample m noise samples
from a distribution
- Sample m conditions
from a database
- Update generator parameters
to maximize
-
,
-
Learning G

傾向推薦第二種網(wǎng)絡(luò)架構(gòu)
參考文獻(xiàn):StackGAN

參考文獻(xiàn):Patch GAN


參考例子:Github