Reading Note: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation

TITLE: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation

AUTHOR: Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

ASSOCIATION: Google

FROM: arXiv:1801.04381

CONTRIBUTION

  1. The main contribution is a novel layer module: the inverted residual with linear bottleneck.

METHOD

BUILDING BLOCKS

Depthwise Separable Convolutions. The basic idea is to replace a full convolutional operator with a factorized version that splits convolution into two separate layers. The first layer is called a depthwise convolution, it performs lightweight filtering by applying a single convolutional filter per input channel. The second layer is a $1 \times 1$ convolution, called a pointwise convolution, which is responsible for building new features through computing linear combinations of the input channels.

Linear Bottlenecks Consider. It has been long assumed that manifolds of interest in neural networks could be embedded in low-dimensional subspaces. Two properties are indicative of the requirement that the manifold of interest should lie in a low-dimensional subspace of the higher-dimensional activation space:

  1. If the manifold of interest remains non-zero vol-ume after ReLU transformation, it corresponds to a linear transformation.

  2. ReLU is capable of preserving complete information about the input manifold, but only if the input manifold lies in a low-dimensional subspace of the input space.

Assuming the manifold of interest is low-dimensional we can capture this by inserting linear bottleneck layers into the convolutional blocks.

Inverted Residuals. Inspired by the intuition that the bottlenecks actually contain all the necessary information, while an expansion layer acts merely as an implementation detail that accompanies a non-linear transformation of the tensor, shortcuts are used directly between the bottlenecks. In residual networks the bottleneck layers are treated as low-dimensional supplements

to high-dimensional “information” tensors.

The following figure gives the Inverted resicual block. The diagonally hatched texture indicates layers that do not contain non-linearities. It provides a natural separation between the input/output domains of the building blocks (bottleneck layers), and the layer transformation – that is a non-linear function that converts input to the output. The former can be seen as the capacity of the network at each layer, whereas the latter as the expressiveness.

The framework of the work is illustrated in the following figure. The main idea of this work is to learn image aesthetic classification and vision-to-language generation using a multi-task framework.

Inverted Residuals

And the following table gives the basic implementation structure.

Bottleneck residual block

ARCHITECTURE

Architecture

PERFORMANCE

Classification
Object Detection
Semantic Segmentation

---

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末逾礁,一起剝皮案震驚了整個濱河市欢唾,隨后出現(xiàn)的幾起案子七咧,更是在濱河造成了極大的恐慌既峡,老刑警劉巖,帶你破解...
    沈念sama閱讀 221,198評論 6 514
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件码邻,死亡現(xiàn)場離奇詭異凳怨,居然都是意外死亡,警方通過查閱死者的電腦和手機窘行,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,334評論 3 398
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來节吮,“玉大人抽高,你說我怎么就攤上這事⊥讣ǎ” “怎么了?”我有些...
    開封第一講書人閱讀 167,643評論 0 360
  • 文/不壞的土叔 我叫張陵壁熄,是天一觀的道長帚豪。 經(jīng)常有香客問我,道長草丧,這世上最難降的妖魔是什么狸臣? 我笑而不...
    開封第一講書人閱讀 59,495評論 1 296
  • 正文 為了忘掉前任,我火速辦了婚禮昌执,結(jié)果婚禮上烛亦,老公的妹妹穿的比我還像新娘。我一直安慰自己懂拾,他們只是感情好煤禽,可當我...
    茶點故事閱讀 68,502評論 6 397
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著岖赋,像睡著了一般檬果。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 52,156評論 1 308
  • 那天选脊,我揣著相機與錄音杭抠,去河邊找鬼。 笑死恳啥,一個胖子當著我的面吹牛偏灿,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播钝的,決...
    沈念sama閱讀 40,743評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼菩混,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了扁藕?” 一聲冷哼從身側(cè)響起沮峡,我...
    開封第一講書人閱讀 39,659評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎亿柑,沒想到半個月后邢疙,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 46,200評論 1 319
  • 正文 獨居荒郊野嶺守林人離奇死亡望薄,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,282評論 3 340
  • 正文 我和宋清朗相戀三年疟游,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片痕支。...
    茶點故事閱讀 40,424評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡颁虐,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出卧须,到底是詐尸還是另有隱情另绩,我是刑警寧澤,帶...
    沈念sama閱讀 36,107評論 5 349
  • 正文 年R本政府宣布花嘶,位于F島的核電站笋籽,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏椭员。R本人自食惡果不足惜车海,卻給世界環(huán)境...
    茶點故事閱讀 41,789評論 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望隘击。 院中可真熱鬧侍芝,春花似錦、人聲如沸埋同。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,264評論 0 23
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽莺禁。三九已至留量,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背楼熄。 一陣腳步聲響...
    開封第一講書人閱讀 33,390評論 1 271
  • 我被黑心中介騙來泰國打工忆绰, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人可岂。 一個月前我還...
    沈念sama閱讀 48,798評論 3 376
  • 正文 我出身青樓错敢,卻偏偏與公主長得像,于是被迫代替她去往敵國和親缕粹。 傳聞我的和親對象是個殘疾皇子稚茅,可洞房花燭夜當晚...
    茶點故事閱讀 45,435評論 2 359