機(jī)器值:
一個(gè)數(shù)在計(jì)算機(jī)中的二進(jìn)制表示形式, 叫做這個(gè)數(shù)的機(jī)器數(shù)舔亭。機(jī)器數(shù)是帶符號(hào)的,在計(jì)算機(jī)用一個(gè)數(shù)的最高位存放符號(hào), 正數(shù)為0, 負(fù)數(shù)為1。
比如:十進(jìn)制中的數(shù) +3 善绎,計(jì)算機(jī)字長為8位,轉(zhuǎn)換成二進(jìn)制就是00000011诫尽。如果是 -3 禀酱,就是 10000011 。那么牧嫉,這里的 00000011 和 10000011 就是機(jī)器數(shù)剂跟。
真值:
因?yàn)榈谝晃皇欠?hào)位,所以機(jī)器數(shù)的形式值就不等于真正的數(shù)值酣藻。例如上面的有符號(hào)數(shù) 10000011曹洽,其最高位1代表負(fù),其真正數(shù)值是 -3 而不是形式值131(10000011轉(zhuǎn)換成十進(jìn)制等于131)辽剧。所以送淆,為區(qū)別起見,將帶符號(hào)位的機(jī)器數(shù)對(duì)應(yīng)的真正數(shù)值稱為機(jī)器數(shù)的真值怕轿。
例:0000 0001的真值 = +000 0001 = +1坊夫,1000 0001的真值 = –000 0001 = –1
原碼:
原碼就是符號(hào)位加上真值的絕對(duì)值, 即用第一位表示符號(hào), 其余位表示值. 比如如果是8位二進(jìn)制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符號(hào)位. 因?yàn)榈谝晃皇欠?hào)位, 所以8位二進(jìn)制數(shù)的取值范圍就是:[1111 1111 , 0111 1111]
即[-127 , 127]。原碼是人腦最容易理解和計(jì)算的表示方式.
反碼:
反碼的表示方法是:正數(shù)的反碼是其本身撤卢,負(fù)數(shù)的反碼是在其原碼的基礎(chǔ)上, 符號(hào)位不變环凿,其余各個(gè)位取反。
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可見如果一個(gè)反碼表示的是負(fù)數(shù), 人腦無法直觀的看出來它的數(shù)值. 通常要將其轉(zhuǎn)換成原碼再計(jì)算.
補(bǔ)碼:
補(bǔ)碼的表示方法是:
正數(shù)的補(bǔ)碼就是其本身
負(fù)數(shù)的補(bǔ)碼是在其原碼的基礎(chǔ)上, 符號(hào)位不變, 其余各位取反, 最后+1.?
[+1] = [00000001]原 = [00000001]反 = [00000001]補(bǔ)
[-1] = [10000001]原 = [11111110]反 = [11111111]補(bǔ)
對(duì)于負(fù)數(shù), 補(bǔ)碼表示方式也是人腦無法直觀看出其數(shù)值的. 通常也需要轉(zhuǎn)換成原碼在計(jì)算其數(shù)值.
正數(shù):
正數(shù)的反碼和補(bǔ)碼都與原碼相同
負(fù)數(shù):
負(fù)數(shù)的反碼放吩、補(bǔ)碼與原碼不同智听,負(fù)數(shù)的反碼:原碼中除去符號(hào)位,其他的數(shù)值位取反渡紫,0變1到推,1變0。負(fù)數(shù)的補(bǔ)碼:反碼+1
解釋:為什么byte類型的取值范圍為-128~127惕澎?
現(xiàn)在我們知道了計(jì)算機(jī)可以有三種編碼方式表示一個(gè)數(shù). 對(duì)于正數(shù)因?yàn)槿N編碼方式的結(jié)果都相同:
[+1] = [00000001]原 = [00000001]反 = [00000001]補(bǔ)
所以不需要過多解釋. 但是對(duì)于負(fù)數(shù):
[-1] = [10000001]原 = [11111110]反 = [11111111]補(bǔ)
可見原碼, 反碼和補(bǔ)碼是完全不同的. 既然原碼才是被人腦直接識(shí)別并用于計(jì)算表示方式, 為何還會(huì)有反碼和補(bǔ)碼呢?
首先, 因?yàn)槿四X可以知道第一位是符號(hào)位, 在計(jì)算的時(shí)候我們會(huì)根據(jù)符號(hào)位, 選擇對(duì)真值區(qū)域的加減. (真值的概念在本文最開頭). 但是對(duì)于計(jì)算機(jī), 加減乘數(shù)已經(jīng)是最基礎(chǔ)的運(yùn)算, 要設(shè)計(jì)的盡量簡單. 計(jì)算機(jī)辨別”符號(hào)位”顯然會(huì)讓計(jì)算機(jī)的基礎(chǔ)電路設(shè)計(jì)變得十分復(fù)雜! 于是人們想出了將符號(hào)位也參與運(yùn)算的方法. 我們知道, 根據(jù)運(yùn)算法則減去一個(gè)正數(shù)等于加上一個(gè)負(fù)數(shù), 即: 1-1 = 1 + (-1) = 0 , 所以機(jī)器可以只有加法而沒有減法, 這樣計(jì)算機(jī)運(yùn)算的設(shè)計(jì)就更簡單了.
于是人們開始探索 將符號(hào)位參與運(yùn)算, 并且只保留加法的方法. 首先來看原碼:
計(jì)算十進(jìn)制的表達(dá)式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
如果用原碼表示, 讓符號(hào)位也參與計(jì)算, 顯然對(duì)于減法來說, 結(jié)果是不正確的.這也就是為何計(jì)算機(jī)內(nèi)部不使用原碼表示一個(gè)數(shù).
為了解決原碼做減法的問題, 出現(xiàn)了反碼:
計(jì)算十進(jìn)制的表達(dá)式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
發(fā)現(xiàn)用反碼計(jì)算減法, 結(jié)果的真值部分是正確的. 而唯一的問題其實(shí)就出現(xiàn)在”0”這個(gè)特殊的數(shù)值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號(hào)是沒有任何意義的. 而且會(huì)有[0000 0000]原和[1000 0000]原兩個(gè)編碼表示0.
于是補(bǔ)碼的出現(xiàn), 解決了0的符號(hào)以及兩個(gè)編碼的問題:
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 =[0000 0001]反 + [1111 1110]反= [0000 0001]補(bǔ) + [1111 1111]補(bǔ) = [0000 0000]補(bǔ)=[0000 0000]原
這樣0用[0000 0000]表示, 而以前出現(xiàn)問題的-0則不存在了.而且可以用[1000 0000]表示-128:
(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]補(bǔ) + [1000 0001]補(bǔ) = [1000 0000]補(bǔ)
-1-127的結(jié)果應(yīng)該是-128, 在用補(bǔ)碼運(yùn)算的結(jié)果中, [1000 0000]補(bǔ) 就是-128. 但是注意因?yàn)閷?shí)際上是使用以前的-0的補(bǔ)碼來表示-128, 所以-128并沒有原碼和反碼表示.(對(duì)-128的補(bǔ)碼表示[1000 0000]補(bǔ)算出來的原碼是[0000 0000]原, 這是不正確的)莉测,使用補(bǔ)碼, 不僅僅修復(fù)了0的符號(hào)以及存在兩個(gè)編碼的問題, 而且還能夠多表示一個(gè)最低數(shù). 這就是為什么8位二進(jìn)制, 使用原碼或反碼表示的范圍為[-127, +127], 而使用補(bǔ)碼表示的范圍為[-128, 127]。
因?yàn)闄C(jī)器使用補(bǔ)碼, 所以對(duì)于編程中常用到的32位int類型, 可以表示范圍是: [-231, 231-1] 因?yàn)榈谝晃槐硎镜氖欠?hào)位.而使用補(bǔ)碼表示時(shí)又可以多保存一個(gè)最小值唧喉。
---------------------
作者:探路的淮--Ontheway
來源:CSDN
原文:https://blog.csdn.net/qq_23418393/article/details/57421688
版權(quán)聲明:本文為博主原創(chuàng)文章捣卤,轉(zhuǎn)載請(qǐng)附上博文鏈接忍抽!