TensorFlow — 相關(guān) API

環(huán)境:Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-105-generic x86_64)

1 TensorFlow 相關(guān)函數(shù)理解

1.1 tf.truncated_normal

truncated_normal(

shape,

mean=0.0,

stddev=1.0,

dtype=tf.float32,

seed=None,

name=None

)

功能說明:

產(chǎn)生截斷正態(tài)分布隨機數(shù)彩匕,取值范圍為[mean - 2 * stddev, mean + 2 * stddev]群发。

參數(shù)列表

示例代碼:

現(xiàn)在在 /home/ubuntu 目錄下創(chuàng)建源文件 truncated_normal.py

truncated_normal.py

#!/usr/bin/python

import tensorflow as tf

initial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1)

print tf.Session().run(initial)

然后執(zhí)行:

python /home/ubuntu/truncated_normal.py

執(zhí)行結(jié)果:

[[-0.18410809-1.285927770.58813173]

[-1.58745313 -0.48672566 -0.27244243]

[-1.458331470.513067361.20532846]]

將得到一個取值范圍 [-2, 2] 的 3 * 3 矩陣鸦列,可以嘗試修改源代碼看看輸出結(jié)果有什么變化。

1.2 tf.constant

constant(

value,

dtype=None,

shape=None,

name='Const',

verify_shape=False

)

功能說明:

根據(jù) value 的值生成一個 shape 維度的常量張量

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?constant.py垄惧,內(nèi)容可參考:

constant.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

a = tf.constant([1,2,3,4,5,6],shape=[2,3])

b = tf.constant(-1,shape=[3,2])

c = tf.matmul(a,b)

e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3])

f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2])

g = tf.matmul(e,f)

with tf.Session() as sess:

? ? print sess.run(a)

? ? print("##################################")

? ? print sess.run(b)

? ? print("##################################")

? ? print sess.run(c)

? ? print("##################################")

? ? print sess.run(e)

? ? print("##################################")

? ? print sess.run(f)

? ? print("##################################")

? ? print sess.run(g)

然后執(zhí)行:

python /home/ubuntu/constant.py

執(zhí)行結(jié)果:

[[1 2 3]

[4 5 6]]

##################################

[[-1 -1]

[-1 -1]

[-1 -1]]

##################################

[[-6 -6]

[-15 -15]]

##################################

[[[1 2 3]

[ 4 5 6]]

[[ 7 8 9]

[10 11 12]]]

##################################

[[[13 14]

[15 16]

[17 18]]

[[19 20]

[21 22]

[23 24]]]

##################################

[[[94 100]

[229 244]]

[[508 532]

[697 730]]]

a: 2x3 維張量;

b: 3x2 維張量绰寞;

c: 2x2 維張量到逊;

e: 2x2x3 維張量;

f: 2x3x2 維張量滤钱;

g: 2x2x2 維張量觉壶。

可以嘗試修改源代碼看看輸出結(jié)果有什么變化。

1.3 tf.placeholder

placeholder(

dtype,

shape=None,

name=None

)

功能說明:

是一種占位符件缸,在執(zhí)行時候需要為其提供數(shù)據(jù)

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?placeholder.py铜靶,內(nèi)容可參考:

placeholder.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

x = tf.placeholder(tf.float32,[None,10])

y = tf.matmul(x,x)

with tf.Session() as sess:

? ? rand_array = np.random.rand(10,10)

? ? print sess.run(y,feed_dict={x:rand_array})

然后執(zhí)行:

python /home/ubuntu/placeholder.py

執(zhí)行結(jié)果:

[[1.81712103 ?2.02877522 ?1.68924046 2.40462661 ?1.90574181 ?2.21769357

1.66864204 ?1.87491691 ?2.32046914 ?2.07164645]

[ 3.18995905 ?2.80489087 ?2.53446984 ?2.93795609 ?2.35939479 ?2.61397004

1.47369146 ?1.69601274 ?2.96881104 ?2.80005288]

[ 3.40027285 ?3.17128634 ?2.83247375 ?3.58863354 ?2.67104673 ?2.81708789

2.04706836 ?2.4437325 ?3.10964417 ?3.03987789]

[ 2.04807019 ?2.11296868 ?1.85848451 ?2.26381588 ?2.00105739 ?2.1591928

1.59371364 ?1.69079185 ?2.35918951 ?2.3390758 ]

[ 3.14326477 ?3.03518987 ?2.70114732 ?3.35116243 ?2.97751141 ?3.10402942

2.12285256 ?2.45907426 ?3.64020634 ?3.09404778]

[ 2.46236205 ?2.59506202 ?2.11775351 ?2.43848658 ?2.24290538 ?2.07725525

1.73363113 ?1.79471815 ?2.22352362 ?2.47508812]

[ 2.3489728 ?3.25824308 ?2.53069353 ?3.52486014 ?3.3552053 ?3.18628955

2.6079123 ?2.44158649 ?3.47814059 ?3.41102791]

[ 2.39285374 ?2.33928251 ?2.19442534 ?2.28283715 ?1.99198937 ?1.68016291

1.41813767 ?2.16835332 ?1.86814547 ?1.73498607]

[ 2.71498179 ?2.88635182 ?2.35225129 ?3.11072111 ?2.72122979 ?2.57475829

2.12802029 ?2.54610658 ?2.97226429 ?2.80705166]

[ 2.99051809 ?3.2901628 ?2.51092815 ?3.67744827 ?2.57051396 ?2.53983688

2.18044734 ?2.18324852 ?2.58032012 ?3.19048524]]

輸出一個 10x10 維的張量。也可以嘗試修改源代碼看看輸出結(jié)果有什么變化他炊。

1.4 tf.nn.bias_add

bias_add(

value,

bias,

data_format=None,

name=None

)

功能說明:

將偏差項 bias 加到 value 上面争剿,可以看做是 tf.add 的一個特例已艰,其中 bias 必須是一維的,并且維度和 value的最后一維相同蚕苇,數(shù)據(jù)類型必須和 value 相同哩掺。

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?bias_add.py,內(nèi)容可參考:

bias_add.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

a = tf.constant([[1.0, 2.0],[1.0, 2.0],[1.0, 2.0]])

b = tf.constant([2.0,1.0])

c = tf.constant([1.0])

sess = tf.Session()

print sess.run(tf.nn.bias_add(a, b))

#print sess.run(tf.nn.bias_add(a,c)) error

print("##################################")

print sess.run(tf.add(a, b))

print("##################################")

print sess.run(tf.add(a, c))

然后執(zhí)行:

python /home/ubuntu/bias_add.py

執(zhí)行結(jié)果:

[[3.3.]

[ 3.3.]

[ 3.3.]]

##################################

[[3.3.]

[ 3.3.]

[ 3.3.]]

##################################

[[2.3.]

[ 2.3.]

[ 2.3.]]

3 個 3x2 維張量涩笤。也可以嘗試修改源代碼看看輸出結(jié)果有什么變化嚼吞。

1.5 tf.reduce_mean

reduce_mean(

input_tensor,

axis=None,

keep_dims=False,

name=None,

reduction_indices=None

)

功能說明:

計算張量 input_tensor 平均值

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?reduce_mean.py,內(nèi)容可參考:

reduce_mean.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial = [[1.,1.],[2.,2.]]

x = tf.Variable(initial,dtype=tf.float32)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

? ? sess.run(init_op)

? ? print sess.run(tf.reduce_mean(x))

? ? print sess.run(tf.reduce_mean(x,0)) #Column

? ? print sess.run(tf.reduce_mean(x,1)) #row

然后執(zhí)行:

python /home/ubuntu/reduce_mean.py

執(zhí)行結(jié)果:

1.5

[ 1.51.5]

[ 1.2.]

也可以嘗試修改源代碼看看輸出結(jié)果有什么變化辆它。

1.6 tf.squared_difference

squared_difference(

x,

y,

name=None

)

功能說明:

計算張量 x誊薄、y 對應(yīng)元素差平方

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?squared_difference.py,內(nèi)容可參考:

squared_difference.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial_x = [[1.,1.],[2.,2.]]

x = tf.Variable(initial_x,dtype=tf.float32)

initial_y = [[3.,3.],[4.,4.]]

y = tf.Variable(initial_y,dtype=tf.float32)

diff = tf.squared_difference(x,y)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

? ? sess.run(init_op)

? ? print sess.run(diff)

然后執(zhí)行:

python /home/ubuntu/squared_difference.py

執(zhí)行結(jié)果:

[[ 4.4.]

[ 4.4.]]

也可以嘗試修改源代碼看看輸出結(jié)果有什么變化锰茉。

1.7 tf.square

square(

x,

name=None

)

功能說明:

計算張量對應(yīng)元素平方

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?square.py呢蔫,內(nèi)容可參考:

square.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial_x = [[1.,1.],[2.,2.]]

x = tf.Variable(initial_x,dtype=tf.float32)

initial_y = [[3.,3.],[4.,4.]]

y = tf.Variable(initial_y,dtype=tf.float32)

diff = tf.squared_difference(x,y)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

? ? sess.run(init_op)

? ? print sess.run(diff)

然后執(zhí)行:

python /home/ubuntu/square.py

執(zhí)行結(jié)果:

[[ 1.1.]

[ 4.4.]]

也可以嘗試修改源代碼看看輸出結(jié)果有什么變化。

2 TensorFlow 相關(guān)類理解

2.1 tf.Variable

__init__(

initial_value=None,

trainable=True,

collections=None,

validate_shape=True,

caching_device=None,

name=None,

variable_def=None,

dtype=None,

expected_shape=None,

import_scope=None

)

功能說明:

維護圖在執(zhí)行過程中的狀態(tài)信息飒筑,例如神經(jīng)網(wǎng)絡(luò)權(quán)重值的變化片吊。

參數(shù)列表

示例代碼:

現(xiàn)在在?/home/ubuntu?目錄下創(chuàng)建源文件?Variable.py,內(nèi)容可參考:

Variable.py

#!/usr/bin/python

import tensorflow as tf

initial = tf.truncated_normal(shape=[10,10],mean=0,stddev=1)

W = tf.Variable(initial)

list = [[1.,1.],[2.,2.]]

X = tf.Variable(list,dtype=tf.float32)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

? ? sess.run(init_op)

? ? print("##################(1)################")

? ? print sess.run(W)

? ? print("##################(2)################")

? ? print sess.run(W[:2,:2])

? ? op = W[:2,:2].assign(22.*tf.ones((2,2)))

? ? print("###################(3)###############")

? ? print sess.run(op)

? ? print("###################(4)###############")

? ? print (W.eval(sess)) #computes and returnsthe value of this variable

? ? print("####################(5)##############")

? ? print (W.eval())#Usage with the default session

? ? print("#####################(6)#############")

? ? print W.dtype

? ? print sess.run(W.initial_value)

? ? print sess.run(W.op)

? ? print W.shape

? ? print("###################(7)###############")

? ? print sess.run(X)

然后執(zhí)行:

python /home/ubuntu/Variable.py

執(zhí)行結(jié)果:

##################(1)################

[[ 0.56087822? 0.32767066? 1.24723649 -0.38045949 -1.58120871? 0.61508512? -0.50005329? 0.557872? ? 0.24264131? 1.15695083]

[ 0.8403486? 0.14245604 -1.13870573? 0.2471588? 0.48664871? 0.89047027? 1.03071976? 1.1539737? -0.64689875 -0.87872595]

[-0.09499338? 0.40910682? 1.70955396 -1.12553477? 0.58261496? 0.27552807? 0.9310683? -0.80871385 -0.10735693 -1.08375466]

[-0.62496728 -0.26538777? 0.07361894 -0.44500601? 0.58208632 -1.08835173? -1.80241001 -1.10108757 -0.00228581? 1.81949258]

[-1.56699359? 1.59961379? 1.14145374 -0.41384494 -1.24469018 -1.04554486? 0.30459064 -1.59272766 -0.20161593? 0.02574082]

[-0.00295581? 0.4494803? -0.09411573? 0.85826468? 0.01789743 -0.33853438? 0.21242785 -0.00592159? 0.20592701 -0.61374348]

[ 1.73881531 -0.38042647? 0.460399? -1.6453017? -0.58561307 -0.7130214? 0.32697856 -0.84689331 -1.15418518? 1.21276581]

[-1.15040958? 0.88829482? 0.73727763? 0.63111001? 0.90698457 -0.33168671? 0.21835616 -0.26278856? 0.63736057 -0.4095172 ]

[-1.20656824 -0.6755206? -0.21640387 -0.03773152 -0.1836649? -1.38785648? -0.48950577? 0.81531078? 0.1250588? -0.15474565]

[-0.46234027 -0.32404706 -0.3527672? 0.70526761? 0.2378609? -0.56674719? 0.47251439? 1.03810799? 0.34087342? 0.21140042]]

##################(2)################

[[ 0.56087822? 0.32767066] [ 0.8403486? 0.14245604]]

###################(3)###############

[[? 2.20000000e+01? 2.20000000e+01? 1.24723649e+00? -3.80459487e-01? -1.58120871e+00? 6.15085125e-01? -5.00053287e-01? 5.57871997e-01? ? 2.42641315e-01? 1.15695083e+00]

[? 2.20000000e+01? 2.20000000e+01? -1.13870573e+00? 2.47158796e-01? ? 4.86648709e-01? 8.90470266e-01? 1.03071976e+00? 1.15397370e+00? -6.46898746e-01? -8.78725946e-01]

[ -9.49933752e-02? 4.09106821e-01? 1.70955396e+00? -1.12553477e+00? ? 5.82614958e-01? 2.75528073e-01? 9.31068301e-01? -8.08713853e-01? -1.07356928e-01? -1.08375466e+00]

[ -6.24967277e-01? -2.65387774e-01? 7.36189410e-02? -4.45006013e-01? ? 5.82086325e-01? -1.08835173e+00? -1.80241001e+00? -1.10108757e+00? -2.28581345e-03? 1.81949258e+00]

[ -1.56699359e+00? 1.59961379e+00? 1.14145374e+00? -4.13844943e-01? -1.24469018e+00? -1.04554486e+00? 3.04590642e-01? -1.59272766e+00? -2.01615930e-01? 2.57408191e-02]

[ -2.95581389e-03? 4.49480295e-01? -9.41157266e-02? 8.58264685e-01? ? 1.78974271e-02? -3.38534385e-01? 2.12427855e-01? -5.92159014e-03? ? 2.05927014e-01? -6.13743484e-01]

[? 1.73881531e+00? -3.80426466e-01? 4.60399002e-01? -1.64530170e+00? -5.85613072e-01? -7.13021398e-01? 3.26978564e-01? -8.46893311e-01? -1.15418518e+00? 1.21276581e+00]

[ -1.15040958e+00? 8.88294816e-01? 7.37277627e-01? 6.31110013e-01? ? 9.06984568e-01? -3.31686705e-01? 2.18356162e-01? -2.62788564e-01? ? 6.37360573e-01? -4.09517199e-01]

[ -1.20656824e+00? -6.75520599e-01? -2.16403872e-01? -3.77315208e-02? -1.83664903e-01? -1.38785648e+00? -4.89505768e-01? 8.15310776e-01? ? 1.25058800e-01? -1.54745653e-01]

[ -4.62340266e-01? -3.24047059e-01? -3.52767199e-01? 7.05267608e-01? ? 2.37860903e-01? -5.66747189e-01? 4.72514391e-01? 1.03810799e+00? ? 3.40873420e-01? 2.11400419e-01]]

###################(4)###############

[[? 2.20000000e+01? 2.20000000e+01? 1.24723649e+00? -3.80459487e-01? -1.58120871e+00? 6.15085125e-01? -5.00053287e-01? 5.57871997e-01? ? 2.42641315e-01? 1.15695083e+00]

[? 2.20000000e+01? 2.20000000e+01? -1.13870573e+00? 2.47158796e-01? ? 4.86648709e-01? 8.90470266e-01? 1.03071976e+00? 1.15397370e+00? -6.46898746e-01? -8.78725946e-01]

[ -9.49933752e-02? 4.09106821e-01? 1.70955396e+00? -1.12553477e+00? ? 5.82614958e-01? 2.75528073e-01? 9.31068301e-01? -8.08713853e-01? -1.07356928e-01? -1.08375466e+00]

[ -6.24967277e-01? -2.65387774e-01? 7.36189410e-02? -4.45006013e-01? ? 5.82086325e-01? -1.08835173e+00? -1.80241001e+00? -1.10108757e+00? -2.28581345e-03? 1.81949258e+00]

[ -1.56699359e+00? 1.59961379e+00? 1.14145374e+00? -4.13844943e-01? -1.24469018e+00? -1.04554486e+00? 3.04590642e-01? -1.59272766e+00? -2.01615930e-01? 2.57408191e-02]

[ -2.95581389e-03? 4.49480295e-01? -9.41157266e-02? 8.58264685e-01? ? 1.78974271e-02? -3.38534385e-01? 2.12427855e-01? -5.92159014e-03? ? 2.05927014e-01? -6.13743484e-01]

[? 1.73881531e+00? -3.80426466e-01? 4.60399002e-01? -1.64530170e+00? -5.85613072e-01? -7.13021398e-01? 3.26978564e-01? -8.46893311e-01? -1.15418518e+00? 1.21276581e+00]

[ -1.15040958e+00? 8.88294816e-01? 7.37277627e-01? 6.31110013e-01? ? 9.06984568e-01? -3.31686705e-01? 2.18356162e-01? -2.62788564e-01? ? 6.37360573e-01? -4.09517199e-01]

[ -1.20656824e+00? -6.75520599e-01? -2.16403872e-01? -3.77315208e-02? -1.83664903e-01? -1.38785648e+00? -4.89505768e-01? 8.15310776e-01? ? 1.25058800e-01? -1.54745653e-01]

[ -4.62340266e-01? -3.24047059e-01? -3.52767199e-01? 7.05267608e-01? ? 2.37860903e-01? -5.66747189e-01? 4.72514391e-01? 1.03810799e+00? ? 3.40873420e-01? 2.11400419e-01]]

####################(5)##############

[[? 2.20000000e+01? 2.20000000e+01? 1.24723649e+00? -3.80459487e-01? -1.58120871e+00? 6.15085125e-01? -5.00053287e-01? 5.57871997e-01? ? 2.42641315e-01? 1.15695083e+00]

[? 2.20000000e+01? 2.20000000e+01? -1.13870573e+00? 2.47158796e-01? ? 4.86648709e-01? 8.90470266e-01? 1.03071976e+00? 1.15397370e+00? -6.46898746e-01? -8.78725946e-01]

[ -9.49933752e-02? 4.09106821e-01? 1.70955396e+00? -1.12553477e+00? ? 5.82614958e-01? 2.75528073e-01? 9.31068301e-01? -8.08713853e-01? -1.07356928e-01? -1.08375466e+00]

[ -6.24967277e-01? -2.65387774e-01? 7.36189410e-02? -4.45006013e-01? ? 5.82086325e-01? -1.08835173e+00? -1.80241001e+00? -1.10108757e+00? -2.28581345e-03? 1.81949258e+00]

[ -1.56699359e+00? 1.59961379e+00? 1.14145374e+00? -4.13844943e-01? -1.24469018e+00? -1.04554486e+00? 3.04590642e-01? -1.59272766e+00? -2.01615930e-01? 2.57408191e-02]

[ -2.95581389e-03? 4.49480295e-01? -9.41157266e-02? 8.58264685e-01? ? 1.78974271e-02? -3.38534385e-01? 2.12427855e-01? -5.92159014e-03? ? 2.05927014e-01? -6.13743484e-01]

[? 1.73881531e+00? -3.80426466e-01? 4.60399002e-01? -1.64530170e+00? -5.85613072e-01? -7.13021398e-01? 3.26978564e-01? -8.46893311e-01? -1.15418518e+00? 1.21276581e+00]

[ -1.15040958e+00? 8.88294816e-01? 7.37277627e-01? 6.31110013e-01? ? 9.06984568e-01? -3.31686705e-01? 2.18356162e-01? -2.62788564e-01? ? 6.37360573e-01? -4.09517199e-01]

[ -1.20656824e+00? -6.75520599e-01? -2.16403872e-01? -3.77315208e-02? -1.83664903e-01? -1.38785648e+00? -4.89505768e-01? 8.15310776e-01? ? 1.25058800e-01? -1.54745653e-01]

[ -4.62340266e-01? -3.24047059e-01? -3.52767199e-01? 7.05267608e-01? ? 2.37860903e-01? -5.66747189e-01? 4.72514391e-01? 1.03810799e+00? ? 3.40873420e-01? 2.11400419e-01]]

#####################(6)#############

<dtype: 'float32_ref'>

[[ 1.81914055 -0.4915559? -0.15831701 -0.88427407 -1.07733405 -0.60749137 ?1.66635537 -1.72299039 -1.61444342? 0.27295882]

[ 0.446365? ? 0.5297941? 0.9737168? -0.50106817 -1.59801197? 1.08469987 ?-0.10664631? 0.08602872 -1.16334164 -0.31328002]

[ 1.02102256? 0.84310216 -1.63820982 -0.37840167? 1.2725147? -1.46472263? 0.81902218? 0.70780081? 0.32180747 -0.22242352]

[-0.76061416? 0.06686125? 1.22337008 -0.76162207? 0.26712251 -0.184366? -0.18723577 -1.27243066? 1.1201812? 0.74929941]

[ 1.55394351? 0.95762426 -0.77478319 -0.62725532? 0.99874109? 0.11631405? 0.55721915 -1.99805415 -1.81725216 -0.33845708]

[ 0.38020468 -0.22800203? 1.18337238 -0.05378164? 0.50396085 -1.87139273? -0.09195592 -1.9437803? 0.19355652? 0.75287497]

[ 0.87766737 -0.58997762? 1.7898128? 1.15790749? 1.89991117 -0.86276245? -0.55173373? 0.52809429? 1.03385186 -0.17748916]

[ 0.85077554? 0.69927084 -0.70190752 -0.09315278 -0.05869755? 0.61413532? -0.18304662? 1.41501033? 0.49717629? 1.04668236]

[-0.03881529 -0.64575118 -0.99053252 -0.99590522? 0.13150445? 1.85600221? -0.12806618 -0.80717343 -1.21601212 -0.819583? ]

[-0.17798649? 0.38206637? 0.92168695? 1.59679687 -0.70975852 -1.37671721 ?1.63708949 -0.1433745? -1.37151611? 0.24576309]]

None

(10, 10)

###################(7)###############

[[ 1.? 1.]

[ 2.? 2.]]

3 完成

到此协屡,我們大致了解了TensorFlow相關(guān)API的含義和用法俏脊。

以上。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末肤晓,一起剝皮案震驚了整個濱河市爷贫,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌补憾,老刑警劉巖漫萄,帶你破解...
    沈念sama閱讀 212,454評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異盈匾,居然都是意外死亡腾务,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,553評論 3 385
  • 文/潘曉璐 我一進店門削饵,熙熙樓的掌柜王于貴愁眉苦臉地迎上來岩瘦,“玉大人,你說我怎么就攤上這事窿撬∑裘粒” “怎么了?”我有些...
    開封第一講書人閱讀 157,921評論 0 348
  • 文/不壞的土叔 我叫張陵劈伴,是天一觀的道長箫津。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么苏遥? 我笑而不...
    開封第一講書人閱讀 56,648評論 1 284
  • 正文 為了忘掉前任饼拍,我火速辦了婚禮,結(jié)果婚禮上田炭,老公的妹妹穿的比我還像新娘师抄。我一直安慰自己,他們只是感情好教硫,可當(dāng)我...
    茶點故事閱讀 65,770評論 6 386
  • 文/花漫 我一把揭開白布叨吮。 她就那樣靜靜地躺著,像睡著了一般瞬矩。 火紅的嫁衣襯著肌膚如雪茶鉴。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,950評論 1 291
  • 那天景用,我揣著相機與錄音涵叮,去河邊找鬼。 笑死伞插,一個胖子當(dāng)著我的面吹牛割粮,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播媚污,決...
    沈念sama閱讀 39,090評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼舀瓢,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了耗美?” 一聲冷哼從身側(cè)響起京髓,我...
    開封第一講書人閱讀 37,817評論 0 268
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎商架,沒想到半個月后堰怨,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,275評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡甸私,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,592評論 2 327
  • 正文 我和宋清朗相戀三年诚些,在試婚紗的時候發(fā)現(xiàn)自己被綠了飞傀。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片皇型。...
    茶點故事閱讀 38,724評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖砸烦,靈堂內(nèi)的尸體忽然破棺而出弃鸦,到底是詐尸還是另有隱情,我是刑警寧澤幢痘,帶...
    沈念sama閱讀 34,409評論 4 333
  • 正文 年R本政府宣布唬格,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏购岗。R本人自食惡果不足惜汰聋,卻給世界環(huán)境...
    茶點故事閱讀 40,052評論 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望喊积。 院中可真熱鬧烹困,春花似錦、人聲如沸乾吻。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,815評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽绎签。三九已至枯饿,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間诡必,已是汗流浹背奢方。 一陣腳步聲響...
    開封第一講書人閱讀 32,043評論 1 266
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留擒权,地道東北人袱巨。 一個月前我還...
    沈念sama閱讀 46,503評論 2 361
  • 正文 我出身青樓,卻偏偏與公主長得像碳抄,于是被迫代替她去往敵國和親愉老。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,627評論 2 350

推薦閱讀更多精彩內(nèi)容

  • 簡單線性回歸 import tensorflow as tf import numpy # 創(chuàng)造數(shù)據(jù) x_dat...
    CAICAI0閱讀 3,542評論 0 49
  • TF API數(shù)學(xué)計算tf...... :math(1)剛開始先給一個運行實例剖效。tf是基于圖(Graph)的計算系統(tǒng)...
    MachineLP閱讀 3,451評論 0 1
  • 本文內(nèi)容構(gòu)架: 1.關(guān)鍵字 定義:被Java語言賦予特定含義的單詞,組成關(guān)鍵字的字母全部小寫 注:goto和con...
    Acamy丶閱讀 238評論 4 1