ORBSLAM問題分析

ORB-SLAM Existing Problems

(1) FAST feature points detection using the gray threshold t is fixed, so that the SLAM process due to the light intensity changes lead to changes in contrast, the number of FAST feature points are decreased, the tracking process failed, causing a disruption to the SLAM process.
(2) Pure rotation will easy to drop frames旋轉(zhuǎn)時容易丟幀
(3) Need maintain a low speed during initialization, preferably in a geometrically rich area. 初始化時需要保持低速截型,最好幾何紋理豐富地區(qū)霸旗。
(4) Invariant feature descriptors used by ORB-SLAM are also sensitive to large perspective distortion and motion blur.

Better features

So we need a feature which is better than orb to solve these problems, this feature should be illumination, rotation and scale invariant. Some hand-crafted feature-detectors are readily available with rotation or scale invariant,such as SIFT, SURF, KAZE,AKAZE. Recently many works focused on learning a detector&descriptors and already achieve better performance than tradition hand-crafted detector&descriptors.
We use HPatches Dataset to evaluate these detector&descriptors,as follow table:


from Hpatches paper

from RFnet paper

from lfnet paper

RF-Net is the stage of the art feature, It can get better illumination, rotation and scale invariant feature than ORB or SIFT and other learned detector&descriptors . It can get more robust keypoints to help SLAM tracking, mapping and reconstruction.

Worth it?

One important question is “Is it worth to spend so much performance on feature detection which is a low-level task in SLAM? ”
I search some papers and get comparison of different features time consumption as follow table:

time comsuming from lfnet

Generally speaking this framework's(ORBSLAM2) all codes are basically around how to improve the quality of feature points. The system uses the ORB features for tracking, mapping and place recognition tasks. And use a complicated extraction process to get better features. as following picture shows:

image.png

In experiment , The way to extract orb can affect accuracy greatly, we use opencv original process to compare ORBSLAM orb extract process:


image.png
load des model 花費了1.09212秒
load det model 花費了0.010026秒
handle image   花費了0.072915秒
get keypoints  花費了0.197004秒
clip patches   花費了0.055784秒
get descriptors花費了0.095122秒

RFNET can achieve 2 fps

Conclusion

Use a powerful feature is worth and can easily enhance SLAM accuracy but our main reason to use Deep feature is not to prove it is better than orb,since orbslam choose orb is not for it's accuracy but for speed. What we do here is we want to prove deep features now is enough to undertake the SLAM task,and can do better than traditional hand-crafted features.

引用:
1份殿、 An Improved Monocular ORB-SLAM Method Xiu-zhen WU, Liu GANG, Wei-si GONG and Yan SHI Department of Control Engineering, Naval Aeronautical Engineering Institute, Yanta, China.

2、https://zhuanlan.zhihu.com/p/57235987

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末憨愉,一起剝皮案震驚了整個濱河市岂座,隨后出現(xiàn)的幾起案子陶因,更是在濱河造成了極大的恐慌胶背,老刑警劉巖巷嚣,帶你破解...
    沈念sama閱讀 217,509評論 6 504
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異钳吟,居然都是意外死亡廷粒,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,806評論 3 394
  • 文/潘曉璐 我一進店門红且,熙熙樓的掌柜王于貴愁眉苦臉地迎上來坝茎,“玉大人,你說我怎么就攤上這事直焙【岸” “怎么了砂轻?”我有些...
    開封第一講書人閱讀 163,875評論 0 354
  • 文/不壞的土叔 我叫張陵奔誓,是天一觀的道長。 經(jīng)常有香客問我搔涝,道長厨喂,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,441評論 1 293
  • 正文 為了忘掉前任庄呈,我火速辦了婚禮蜕煌,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘诬留。我一直安慰自己斜纪,他們只是感情好贫母,可當我...
    茶點故事閱讀 67,488評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著盒刚,像睡著了一般腺劣。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上因块,一...
    開封第一講書人閱讀 51,365評論 1 302
  • 那天橘原,我揣著相機與錄音,去河邊找鬼涡上。 笑死趾断,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的吩愧。 我是一名探鬼主播芋酌,決...
    沈念sama閱讀 40,190評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼雁佳!你這毒婦竟也來了隔嫡?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,062評論 0 276
  • 序言:老撾萬榮一對情侶失蹤甘穿,失蹤者是張志新(化名)和其女友劉穎腮恩,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體温兼,經(jīng)...
    沈念sama閱讀 45,500評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡秸滴,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,706評論 3 335
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了募判。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片荡含。...
    茶點故事閱讀 39,834評論 1 347
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖届垫,靈堂內(nèi)的尸體忽然破棺而出释液,到底是詐尸還是另有隱情,我是刑警寧澤装处,帶...
    沈念sama閱讀 35,559評論 5 345
  • 正文 年R本政府宣布误债,位于F島的核電站,受9級特大地震影響妄迁,放射性物質(zhì)發(fā)生泄漏寝蹈。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,167評論 3 328
  • 文/蒙蒙 一登淘、第九天 我趴在偏房一處隱蔽的房頂上張望箫老。 院中可真熱鬧,春花似錦黔州、人聲如沸耍鬓。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,779評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽牲蜀。三九已至仿耽,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間各薇,已是汗流浹背项贺。 一陣腳步聲響...
    開封第一講書人閱讀 32,912評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留峭判,地道東北人开缎。 一個月前我還...
    沈念sama閱讀 47,958評論 2 370
  • 正文 我出身青樓,卻偏偏與公主長得像林螃,于是被迫代替她去往敵國和親奕删。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 44,779評論 2 354

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,325評論 0 10
  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,495評論 0 23
  • 2018年12月5日 楊麗 我是一個善良有愛疗认,堅持肯吃苦的人.滿滿的都是正能量的人完残。2019初心依舊,綻...
    牧石園閱讀 135評論 0 2
  • 說了這么多生產(chǎn)效率的事情横漏,到底有什么用呢谨设?知識節(jié)省一點兒時間或是多賺一點兒錢嗎?對此缎浇,作者回答這本書提出的問題:你...
    劉強劉強閱讀 81評論 0 0
  • 這么多年來我仍然覺得“深海里的星星”是我看過最好看的言情小說沒有之一扎拣,很多人都說到了不看言情小說的年紀了,我只是覺...
    徐徐晚來閱讀 1,537評論 4 0