Generative Modeling for Small-Data Object Detection (ICCV2019)

1. main info

  • iccv2019
  • task: Small-Data Object Detection
  • main idea: using generative model

motivation: 1) generative models e.g., GAN is very successful; 2) how can they be useful for downstream tasks?

One example is object detection (OD), especially small-data OD where labeled data is limited. For example, in the case of medical images.

This paper: uses generative models to improve the performance in small-data object detection.

Some problems may appear:

  1. previous works on object insertion for generative models often needs segmentation masks, which are often not available;
  2. GANs are designed to generate realistic images but may not align with the downstream tasks.

Thus, a new DetectorGAN is proposed. DetectorGAN combines the detector and the GAN together in a unified model.

In general, there are two branches after the detector, 1) discriminator to generate adversarial loss; 2) detector to generate the detection loss. Two losses are used to train the model.

Typically, one difficulty is the generator will not receive the gradients of the dection loss, which makes the goal of generating better images for OD fail. Thus, this paper bridges the line between the generator and detection loss.

main contribution:

  1. first integrate a detector into the GAN;
  2. propose a novel unrolling method to bridge the generator and detection.
  3. good results

2. Related works

  1. image-to-image translation
  2. object insertion with GANs
  3. Integration of GANs and Classifiers
  4. Data AUfmenttaion for Object Detection

3. DetectorGAN

main components: a generator, (multiple) discriminators, and a detector.

  • detector: gives feedback to generator on whether generated images are good.

  • discriminator: improve the realism and interpretability of the generated images.

  • X: learn images without objects;

  • Y: labeled images with objects;

3.1 modules

1) Generators

  • G_X: takes X and mask as input, output synthetic image with input background and an object inserted at the masked area.
  • G_Y: takes Y and the object mask as input, output an image with the indicated object removed.

the masks which indicate the plausible inserting locations are also important to the results. It depends on the target datasets.

2) Discriminators

DIS_{globalX}: between {real X, generated X} globally.
DIS_{globalY}: between {real Y, generated Y} globally.
DIS_{localX}: between {real X, generated X} locally in the mased area.

3) detector

  • detect for both Y and generated X.

3.2 Train generator with detection losses

key: train generator G_X using the gradients from the detector.

  • L_{det}^{real} only related to real image Y and the detector
  • L_{det}^{syn} related to clean image X, detector, and G_X.

limitation: there is no link between the real image Y and the generator G_X while the goal is to achieve good results on the real image Y.

Thus, propose the unrolling a single forward-backward pass of the detector:

I think that means using the gradients from the L_{det}^{real} and L_{det}^{syn} to update the weights of the detector at the same time.

Specifically,

  1. train weight DET with generated X and real Y and obtain the gradients using eq.3
  2. update DET
  3. use the updated DET to get eq.1

3.3 overall losses and training

  1. detection: detection loss, eq.1 effected by eq.3, and eq.2
  2. close to the real images globally and locally; L_{GAN}(DIS_{globalX}), L_{GAN}(DIS_{globalY}), L_{GAN}(DIS_{localX});
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末幢码,一起剝皮案震驚了整個濱河市轿塔,隨后出現(xiàn)的幾起案子罪郊,更是在濱河造成了極大的恐慌枷踏,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,470評論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件鳍贾,死亡現(xiàn)場離奇詭異该默,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)限嫌,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,393評論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來时捌,“玉大人怒医,你說我怎么就攤上這事∩萏郑” “怎么了稚叹?”我有些...
    開封第一講書人閱讀 162,577評論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長拿诸。 經(jīng)常有香客問我扒袖,道長,這世上最難降的妖魔是什么亩码? 我笑而不...
    開封第一講書人閱讀 58,176評論 1 292
  • 正文 為了忘掉前任季率,我火速辦了婚禮,結(jié)果婚禮上描沟,老公的妹妹穿的比我還像新娘飒泻。我一直安慰自己,他們只是感情好吏廉,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,189評論 6 388
  • 文/花漫 我一把揭開白布泞遗。 她就那樣靜靜地躺著,像睡著了一般席覆。 火紅的嫁衣襯著肌膚如雪史辙。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,155評論 1 299
  • 那天佩伤,我揣著相機(jī)與錄音聊倔,去河邊找鬼。 笑死畦戒,一個胖子當(dāng)著我的面吹牛方库,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播障斋,決...
    沈念sama閱讀 40,041評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了垃环?” 一聲冷哼從身側(cè)響起邀层,我...
    開封第一講書人閱讀 38,903評論 0 274
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎遂庄,沒想到半個月后寥院,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,319評論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡涛目,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,539評論 2 332
  • 正文 我和宋清朗相戀三年秸谢,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片霹肝。...
    茶點(diǎn)故事閱讀 39,703評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡估蹄,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出沫换,到底是詐尸還是另有隱情臭蚁,我是刑警寧澤,帶...
    沈念sama閱讀 35,417評論 5 343
  • 正文 年R本政府宣布讯赏,位于F島的核電站垮兑,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏漱挎。R本人自食惡果不足惜系枪,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,013評論 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望磕谅。 院中可真熱鬧私爷,春花似錦、人聲如沸怜庸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,664評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽割疾。三九已至嚎卫,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間宏榕,已是汗流浹背拓诸。 一陣腳步聲響...
    開封第一講書人閱讀 32,818評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留麻昼,地道東北人奠支。 一個月前我還...
    沈念sama閱讀 47,711評論 2 368
  • 正文 我出身青樓,卻偏偏與公主長得像抚芦,于是被迫代替她去往敵國和親倍谜。 傳聞我的和親對象是個殘疾皇子迈螟,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,601評論 2 353

推薦閱讀更多精彩內(nèi)容