JavaWordCount

  1. 新建Maven項目
  • 工作目錄:D:\workspace\IdeaProjects
  1. 配置pom文件

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <groupId>org.example</groupId>
        <artifactId>learning</artifactId>
        <version>1.0-SNAPSHOT</version>
    
        <properties>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
            <spark.version>2.2.0</spark.version>
            <scala.version>2.11.8</scala.version>
            <hadoop.version>2.6.5</hadoop.version>
            <hive.version>1.2.1</hive.version>
        </properties>
    
        <dependencies>
            <!--Spark相關的依賴-->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-hive_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <!--hadoop依賴-->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>${hadoop.version}</version>
            </dependency>
            <!--hive依賴包-->
            <dependency>
                <groupId>org.apache.hive</groupId>
                <artifactId>hive-exec</artifactId>
                <version>${hive.version}</version>
            </dependency>
            <!--mysql驅(qū)動包-->
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.38</version>
            </dependency>
        </dependencies>
    </project>
    
  2. 新建JavaWordCount

    package spark;
    
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.sql.SparkSession;
    import scala.Tuple2;
    
    import java.util.Arrays;
    import java.util.List;
    import java.util.regex.Pattern;
    
    public class JavaWordCount {
        private static final Pattern SPACE = Pattern.compile(" ");
    
        public static void main(String[] args) {
            SparkSession spark = SparkSession
                    .builder()
                    .master("local[*]")
                    .appName("WordCount")
                    .getOrCreate();
            String paths = "D:\\workspace\\IdeaProjects\\learning\\src\\main\\resources\\word_count.txt";
            JavaRDD<String> lines = spark.read().textFile(paths).javaRDD();
            JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(SPACE.split(s)).iterator());
            JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1));
            JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> (i1 + i2));
            List<Tuple2<String, Integer>> output = counts.collect();
            for (Tuple2<?, ?> tuple : output) {
                System.out.println(tuple._1() + ": " + tuple._2());
            }
            spark.stop();
        }
    }
    
  3. 在resources目錄下新建log4j.properties和word_count.txt

    log4j.properties文件

    #
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #
    
    # Set everything to be logged to the console
    log4j.rootCategory=WARN, console
    log4j.appender.console=org.apache.log4j.ConsoleAppender
    log4j.appender.console.target=System.err
    log4j.appender.console.layout=org.apache.log4j.PatternLayout
    log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
    
    # Set the default spark-shell log level to WARN. When running the spark-shell, the
    # log level for this class is used to overwrite the root logger's log level, so that
    # the user can have different defaults for the shell and regular Spark apps.
    log4j.logger.org.apache.spark.repl.Main=WARN
    
    # Settings to quiet third party logs that are too verbose
    log4j.logger.org.spark_project.jetty=WARN
    log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
    log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
    log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
    log4j.logger.org.apache.parquet=ERROR
    log4j.logger.parquet=ERROR
    
    # SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
    log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
    log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
    

    word_count.txt文件

    Give me the strength lightly to bear my joys and sorrows.
    Give me the strength to make my love fruitful in service.
    Give me the strength never to disown the poor or bend my knees before insolent might.
    Give me the strength to raise my mind high above daily trifles.
    And give me the strength to surrender my strength to thy will with love.
    
  4. 運行驗證

最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市疮跑,隨后出現(xiàn)的幾起案子灸叼,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,284評論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡障簿,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,115評論 3 395
  • 文/潘曉璐 我一進店門栅迄,熙熙樓的掌柜王于貴愁眉苦臉地迎上來站故,“玉大人,你說我怎么就攤上這事毅舆∥髀ǎ” “怎么了?”我有些...
    開封第一講書人閱讀 164,614評論 0 354
  • 文/不壞的土叔 我叫張陵憋活,是天一觀的道長污淋。 經(jīng)常有香客問我,道長余掖,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,671評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮盐欺,結果婚禮上赁豆,老公的妹妹穿的比我還像新娘。我一直安慰自己冗美,他們只是感情好魔种,可當我...
    茶點故事閱讀 67,699評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著粉洼,像睡著了一般节预。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上属韧,一...
    開封第一講書人閱讀 51,562評論 1 305
  • 那天安拟,我揣著相機與錄音,去河邊找鬼宵喂。 笑死糠赦,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的锅棕。 我是一名探鬼主播拙泽,決...
    沈念sama閱讀 40,309評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼裸燎!你這毒婦竟也來了顾瞻?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 39,223評論 0 276
  • 序言:老撾萬榮一對情侶失蹤德绿,失蹤者是張志新(化名)和其女友劉穎荷荤,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體脆炎,經(jīng)...
    沈念sama閱讀 45,668評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡梅猿,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,859評論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了秒裕。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片袱蚓。...
    茶點故事閱讀 39,981評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖几蜻,靈堂內(nèi)的尸體忽然破棺而出喇潘,到底是詐尸還是另有隱情,我是刑警寧澤梭稚,帶...
    沈念sama閱讀 35,705評論 5 347
  • 正文 年R本政府宣布颖低,位于F島的核電站,受9級特大地震影響弧烤,放射性物質(zhì)發(fā)生泄漏忱屑。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,310評論 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望莺戒。 院中可真熱鬧伴嗡,春花似錦、人聲如沸从铲。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,904評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽名段。三九已至阱扬,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間伸辟,已是汗流浹背麻惶。 一陣腳步聲響...
    開封第一講書人閱讀 33,023評論 1 270
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留自娩,地道東北人用踩。 一個月前我還...
    沈念sama閱讀 48,146評論 3 370
  • 正文 我出身青樓,卻偏偏與公主長得像忙迁,于是被迫代替她去往敵國和親脐彩。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 44,933評論 2 355