《線性代數(shù)應(yīng)該這樣學(xué)》課內(nèi)驗(yàn)證1-向量空間

《線性代數(shù)應(yīng)該這樣學(xué)》(Linear Algebra Done Right)中說:You cannot read mathematics the way you read a novel. If you zip through a page in less than an hour, you are probably going too fast. When you encounter the phrase “as you should verify”, you should indeed do the verification, which will usually require some writing on your part. 這個(gè)筆記也由此而生。

筆記將會(huì)記錄一部分書內(nèi)要求自行驗(yàn)證的題目晚树。出于某些原因想邦,我將試著用英語來進(jìn)行記錄。這是我第一次嘗試著用英語寫數(shù)學(xué)證明击碗,因此在格式、單詞们拙、語法等地方出錯(cuò)應(yīng)該是難以避免的稍途,望諒解。

CHAPTER 1 Vector Spaces

  1. With the usual operations of addition and scalar multiplication, \mathbb{F}^n is a vector space over \mathbb{F}, as you should verify.

Proof 1.13 states the commutativity. As for associativity, suppose x=(x_1, \cdots , x_n), y=(y_1, \cdots , y_n) and z=(z_1, \cdots , z_n). Then
\begin{align*} (x+y)+z &= ((x_1, \cdots , x_n) + (y_1, \cdots , y_n)) + (z_1, \cdots , z_n) \\ &= (x_1+y_1+z_1, \cdots , x_n+y_n+z_n) \\ &= (x_1+(y_1+z_1), \cdots , x_n+(y_n+z_n)) \\ &= (x_1, \cdots , x_n)+(y_1+z_1, \cdots , y_n+z_n) \\ &= x+(y+z) \end{align*}
Suppose a,b \in \mathbb{F}. Then
\begin{align*} (ab)x &= (abx_1, \cdots , abx_n) \\ &= (a(bx_1), \cdots ,a(bx_n)) \\ &= a(bx) \end{align*}
For additive identity, let 0=(0, \cdots , 0). Obviously, for all x \in \mathbb{F}^n, suppose x=(x_1, \cdots , x_n)
\begin{align*} x+0 &= (x_1 , \cdots , x_n) + (0, \cdots , 0) \\ &= (x_1+0, \cdots , x_n+0) \\ &= (x_1,\cdots , x_n) \\ &= x \end{align*}
For additive inverse, suppose x=(x_1, \cdots , x_n) \in \mathbb{F}^n. There exists y=(-x_1, \cdots ,-x_n) \in \mathbb{F}^n such that
\begin{align*} x+y &= (x_1, \cdots , x_n) + (-x_1, \cdots , -x_n) \\ &= (x_1+(-x_1), \cdots ,x_n+(-x_n)) \\ &=(0, \cdots ,0) \\ &= 0 \end{align*}
For multiplicative identity, suppose x=(x_1, \cdots , x_n) \in \mathbb{F}^n. Then
\begin{align*} 1x &=(1x_1, \cdots , 1x_n) \\ &=(x_1, \cdots , x_n) \\ &=x \end{align*}
For distributive properties, suppose a,b \in \mathbb{F}, x=(x_1, \cdots ,x_n) \in \mathbb{F}^n, y=(y_1, \cdots ,y_n) \in \mathbb{F}^n. Then
\begin{align*} a(x+y) &= a(x_1 + y_1 , \cdots , x_n+y_n) \\ &= (a(x_1+y_1), \cdots , a(x_n+y_n)) \\ &= (ax_1+ay_1, \cdots , ax_n+ay_n) \\ &=(ax_1, \cdots ,ax_n) + (ay_1,\cdots,ay_n) \\ &=ax+ay \end{align*}

\begin{align*} (a+b)x &= ((a+b)x_1, \cdots , (a+b)x_n) \\ &= (ax_1+bx_1, \cdots ,ax_n+bx_n) \\ &=(ax_1,\cdots,ax_n)+(bx_1,\cdots,bx_n) \\ &=ax+bx \end{align*}

Thus \mathbb{F}^n is a vector space over \mathbb{F}.

  1. You should verify all three bullet points in the next example.
    • If S is a nonempty set, then \mathbb{F}^S (with the operations of addition and scalar multiplication as defined above) is a vector space over \mathbb{F}.
    • The additive identity of \mathbb{F}^S is the function 0 : S \to \mathbb{F} defined by 0(x)=0 for all x \in S.
    • For f \in \mathbb{F}^S, the additive inverse of f is the function -f : S \to \mathbb{F} defined by (-f)(x)=-f(x) for all x \in S.

Proof Commutativity. Suppose f,g \in \mathbb{F}^S, then
\begin{align*} (f+g)(x) &= f(x)+g(x) \\ &= g(x)+f(x) \\ &= (g+f)(x) \end{align*}
Associativity. Suppose f,g,h \in \mathbb{F}^S, a,b \in \mathbb{F}, then
\begin{align*} ((f+g)+h)(x) &= (f+g)(x)+h(x) \\ &= f(x)+g(x)+h(x) \\ &= f(x)+ (g(x)+h(x)) \\ &= f(x) +((g+h)(x)) \\ &= (f+(g+h))(x) \end{align*}

\begin{align*} ((ab)f)(x) &= abf(x) \\ &= a(bf(x)) \\ &= a(bf)(x) \end{align*}

Additive identity. Suppose f \in \mathbb{F}^S and 0:S \to \mathbb{F} defined by 0(x)=0 for all x \in S, then
\begin{align*} (f+0)(x) &= f(x)+0(x) \\ &= f(x)+0 \\ &= f(x) \\ \end{align*}
Additive inverse. Suppose f \in \mathbb{F}^S and -f:S \to \mathbb{F} defined by (-f)(x)=-f(x) for all x \in S, then
\begin{align*} (f+(-f))(x) &= f(x)+(-f(x)) =0 \end{align*}
Multiplicative identity. Suppose f \in \mathbb{F}^S, then
\begin{align*} (1f)(x) = 1f(x)=f(x) \end{align*}
Distributive properties. Suppose a,b \in \mathbb{F} and f,g \in \mathbb{F}^S, then
\begin{align*} a((f+g)(x)) &= a(f(x)+g(x)) =af(x)+ag(x) \\ \end{align*}

\begin{align*} ((a+b)f)(x) &= (a+b)f(x)=af(x)+bf(x) \\ \end{align*}

  1. You should verify all the assertions in the next example.

    (a) If b \in \mathbb{F}, then \{(x_1,x_2,x_3,x_4) \in \mathbb{F}^4 : x_3=5x_4+b\} is a subspace of \mathbb{F}^4 if and only if b=0.

    (b) The set of continuous real-valued functions on the interval [0,1] is a subspace of \mathbb{R}^{[0,1]}.

    (c) The set of differentiable real-valued functions on \mathbb{R} is a subspace of \mathbb{R}^{\mathbb R}.

    (d) The set of differentiable real-valued functions f on the interval (0,3) such that f'(2)=b is a subspace of \mathbb{R}^{(0,3)} if and only if b=0.

    (e) The set of all sequences of complex numbers with limit 0 is a subspace of \mathbb{C}^{\infty}.

Proof (a) Denote the set by V.

If it is a subspace of \mathbb{F}^4, then (0,0,0,0) in it. Hence 0=0+b. This happens if b=0.

If b=0, then (0,0,0,0) belongs to the set. For any x,y \in V and \lambda \in \mathbb{F}, suppose x=(x_1,x_2,x_3,x_4), y=(y_1,y_2,y_3,y_4). So we have that x_3=5x_4 and y_3=5y_4. Then
\begin{align*} x+y &= (x_1,x_2,x_3,x_4) +(y_1,y_2,y_3,y_4) \\ &= (x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4) \\ &= (x_1+y_1,x_2+y_2,5(x_4+y_4),x_4+y_4) \in V \end{align*}
i.e. V is closed under addition. Similarly,
\begin{align*} \lambda x &= (\lambda x_1,\lambda x_2 , \lambda x_3,\lambda x_4) \\ &= (\lambda x_1,\lambda x_2, 5\lambda x_4, \lambda x_4) \in V \end{align*}
i.e. V is closed under scalar multiplication.

Hence if b=0, V is a subspace of \mathbb{F}^4.

(b) Denote the set of continuous real-valued functions on the interval [0,1] by V.

The additive identity of \mathbb{R}^{[0,1]} is the constant function f \equiv 0 on [0,1], and it obviously belongs to the set.

The sum of tow continuous functions is continuous, i.e. V is closed under addition.

The product of constant a with continuous function is continuous, i.e. V is closed under scalar multiplication.

Thus V is a subspace of \mathbb{R}^{[0,1]}.

(c) Omitted

(d) Denote the set by V.

If V is a subspace of \mathbb{R}^{[0,3]}, then the additive identity f \equiv 0 \in V. Hence f'(2)=0=b.

If b=0, it is clear that the additive identity f \equiv 0 is contained in V.

Closed under addition: suppose f,g \in V, then f,g are differentiable real-valued functions. So is f+g. Moreover,
\begin{align*} (f+g)'(2) &= f'(2)+g'(2) \\ &= 0+0 \\ &=0 \end{align*}
Closed under scalar multiplication: suppose f \in V and a \in \mathbb{R}, then f is differentiable read-valued function. So is af. Moreover,
\begin{align*} (af)'(2)=af'(2)=0 \end{align*}
(e) Denote the set by V.

Additive identity: it is clear that (0,0,\cdots) \in V.

Closed under addition: suppose a=(a_1,a_2,\cdots) \in V and b=(b_1,b_2, \cdots) \in V, so \lim\limits_{n \to \infty} a_n=0 and \lim\limits_{n \to \infty} b_n=0.
\begin{align*} \lim\limits_{n \to \infty} (a_n+b_n)=\lim\limits_{n \to \infty} a_n +\lim\limits_{n \to \infty} b_n=0+0 =0 \end{align*}
Hence, a+b=(a_1+b_1,a_2+b_2,\cdots) \in V.

Closed under scalar multiplication: suppose a=(a_1,a_2,\cdots) \in V and \lambda \in \mathbb{C}, then \lim\limits_{n \to \infty} a_n=0.
\begin{align*} \lim\limits_{n \to \infty} \lambda a_n=\lambda \lim\limits_{n \to \infty} a_n= \lambda 0 =0 \end{align*}
Hence, \lambda a=(\lambda a_1,\lambda a_2,\cdots) \in V.

  1. Suppose U is the set of all elements of \mathbb{F}^3 whose second and third coordinates equal 0, and W is the set of all elements of \mathbb{F}^3 whose first and third coordinates equal 0:
    U=\{(x,0,0) \in \mathbb{F}^3:x \in \mathbb{F} \} \quad \text{and} \quad W=\{(0,y,0)\in \mathbb{F}^3 : y\in \mathbb{F} \}.
    Then
    U+W =\{(x,y,0): x,y \in \mathbb{F} \},
    as you should verify.

Proof Suppose u=(x_1,0,0) \in U and w=(0,y_1,0) \in W, then
u+w=(x_1,0,0)+(0,y_1,0) =(x_1,y_1,0) \in \{(x,y,0):x,y\in \mathbb{F} \}
Hence U+W \subset \{(x,y,0):x,y\in \mathbb{F} \}.

Every vector in \{(x,y,0):x,y \in \mathbb{F} \}, can be written as
(x,y,0)=(x,0,0)+(y,0,0),
where the first vector on the right side is in U, the second vector is in W.

Hence \{(x,y,0):x,y \in \mathbb{F} \} \subset U+W.

Thus U+W=\{(x,y,0):x,y \in \mathbb{F} \}.

  1. Suppose U is the subspace of \mathbb{F}^3 of those vectors whose last coordinate equals 0, and W is the subspace of \mathbb{F}^3 of those vectors whose first two coordinates equal 0:
    U=\{ (x,y,0)\in \mathbb{F}^3:x,y\in \mathbb{F} \} \quad \text{and} \quad W=\{(0,0,z) \in \mathbb{F}^3 :z\in \mathbb{F} \}.
    Then \mathbb{F}^3 = U \oplus W, as you should verify.

Proof U \cap W={0}, hence U+W is direct sum.

Clearly \mathbb{F}^3=U+W, because every vector (x,y,z) \in \mathbb{F}^3 can be written as
(x,y,z)=(x,y,0)+(0,0,z),
where the first vector on the right side is in U, the second vector is in W.

Thus \mathbb{F}^3=U \oplus W.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末砚婆,一起剝皮案震驚了整個(gè)濱河市械拍,隨后出現(xiàn)的幾起案子突勇,更是在濱河造成了極大的恐慌,老刑警劉巖坷虑,帶你破解...
    沈念sama閱讀 222,590評(píng)論 6 517
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件甲馋,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡迄损,警方通過查閱死者的電腦和手機(jī)定躏,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,157評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來芹敌,“玉大人痊远,你說我怎么就攤上這事∈侠蹋” “怎么了碧聪?”我有些...
    開封第一講書人閱讀 169,301評(píng)論 0 362
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)液茎。 經(jīng)常有香客問我矾削,道長(zhǎng),這世上最難降的妖魔是什么豁护? 我笑而不...
    開封第一講書人閱讀 60,078評(píng)論 1 300
  • 正文 為了忘掉前任哼凯,我火速辦了婚禮,結(jié)果婚禮上楚里,老公的妹妹穿的比我還像新娘断部。我一直安慰自己,他們只是感情好班缎,可當(dāng)我...
    茶點(diǎn)故事閱讀 69,082評(píng)論 6 398
  • 文/花漫 我一把揭開白布蝴光。 她就那樣靜靜地躺著,像睡著了一般达址。 火紅的嫁衣襯著肌膚如雪蔑祟。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 52,682評(píng)論 1 312
  • 那天沉唠,我揣著相機(jī)與錄音疆虚,去河邊找鬼。 笑死满葛,一個(gè)胖子當(dāng)著我的面吹牛径簿,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播嘀韧,決...
    沈念sama閱讀 41,155評(píng)論 3 422
  • 文/蒼蘭香墨 我猛地睜開眼篇亭,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了锄贷?” 一聲冷哼從身側(cè)響起译蒂,我...
    開封第一講書人閱讀 40,098評(píng)論 0 277
  • 序言:老撾萬榮一對(duì)情侶失蹤曼月,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后柔昼,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體哑芹,經(jīng)...
    沈念sama閱讀 46,638評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,701評(píng)論 3 342
  • 正文 我和宋清朗相戀三年岳锁,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片蹦魔。...
    茶點(diǎn)故事閱讀 40,852評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡激率,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出勿决,到底是詐尸還是另有隱情乒躺,我是刑警寧澤,帶...
    沈念sama閱讀 36,520評(píng)論 5 351
  • 正文 年R本政府宣布低缩,位于F島的核電站嘉冒,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏咆繁。R本人自食惡果不足惜讳推,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,181評(píng)論 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望玩般。 院中可真熱鬧银觅,春花似錦、人聲如沸坏为。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,674評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽匀伏。三九已至洒忧,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間够颠,已是汗流浹背熙侍。 一陣腳步聲響...
    開封第一講書人閱讀 33,788評(píng)論 1 274
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留履磨,地道東北人核行。 一個(gè)月前我還...
    沈念sama閱讀 49,279評(píng)論 3 379
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像蹬耘,于是被迫代替她去往敵國(guó)和親芝雪。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,851評(píng)論 2 361

推薦閱讀更多精彩內(nèi)容

  • 我是黑夜里大雨紛飛的人啊 1 “又到一年六月综苔,有人笑有人哭惩系,有人歡樂有人憂愁位岔,有人驚喜有人失落,有的覺得收獲滿滿有...
    陌忘宇閱讀 8,547評(píng)論 28 53
  • 首先介紹下自己的背景: 我11年左右入市到現(xiàn)在,也差不多有4年時(shí)間晤柄,看過一些關(guān)于股票投資的書籍擦剑,對(duì)于巴菲特等股神的...
    瞎投資閱讀 5,735評(píng)論 3 8
  • ![Flask](...
    極客學(xué)院Wiki閱讀 7,253評(píng)論 0 3
  • 不知不覺易趣客已經(jīng)在路上走了快一年了惠勒,感覺也該讓更多朋友認(rèn)識(shí)知道易趣客,所以就謝了這篇簡(jiǎn)介爬坑,已做創(chuàng)業(yè)記事纠屋。 易趣客...
    Physher閱讀 3,424評(píng)論 1 2