首先我們來(lái)簡(jiǎn)單地舉個(gè)pytorch自動(dòng)求導(dǎo)的例子:
x = torch.randn(3)
x = Variable(x, requires_grad = True)
y = x * 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
x.grad
在Ipython中會(huì)直接顯示x.grad的值
Variable containing:
0.2000
2.0000
0.0002
[torch.FloatTensor of size 3]
怎么樣寿弱,是不是很Easy著瓶?
那我們來(lái)試一下使用cuda吧
將代碼簡(jiǎn)單改動(dòng)奖亚,就是將x轉(zhuǎn)化為cuda變量
x = torch.randn(3)
x = Variable(x, requires_grad = True)
x = x.cuda() # 需要你的計(jì)算機(jī)有GPU
y = x * 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
x.grad
我們來(lái)顯示一下羔沙,
print(x.grad)
None
驚不驚喜揪阿,意不意外?
問(wèn)題出在第三行仔夺,cuda的定義要在Variable變量的定義之前琐脏,不然第3行會(huì)把requires_grad這個(gè)bool 搞成False。心好累
改成下邊這樣子就可以了
x = torch.randn(3)
x = Variable(x.cuda(), requires_grad = True)
#x = x.cuda() # 需要你的計(jì)算機(jī)有GPU
y = x * 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
x.grad
Variable containing:
0.2000
2.0000
0.0002
[torch.FloatTensor of size 3]