原文地址, 拒絕轉載: http://www.reibang.com/p/b2691cf186d4
Attribute Lookup
假設 Cls 是類,instance 是類 Cls 的一個實例省有,當調用 instance.attr 時硬梁,到底發(fā)生了什么呢?下面就來一一探討屬性訪問的調用流程
1 descriptor
什么是 desciptor
, 官方文檔給出的回答是
A descriptor is what we call any object that defines
__get__()
,__set__()
, or__delete__()
.
即包含了任意 __get__
或者 __set__
或者 __delete__
函數的方法的 object
都是 descriptor
2 data descriptor 與 non-data descriptors
If an object defines
__set__()
or__delete__()
, it is considered a data descriptor. Descriptors that only define__get__()
are called non-data descriptors (they are typically used for methods but other uses are possible).
如果一個 descriptor
只定義了 __get__
方法淮野,那么就是 non-data descriptor
如果一個 object
定義了 __set__
或者 __delete__
方法,那么就是 data descriptor
class DataDescriptor:
"""
包含了 __set__ 方法吹泡,所以這個類的實例是 data-descritptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'DataDescriptor __get__' + str(typ)
def __set__(self, instance, value):
print ('DataDescriptor __set__')
self.value = value
class NonDataDescriptor:
"""
只定義了 __get__ 方法骤星,所以這個類的實例是 non-data descriptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return'NonDataDescriptor __get__' + str(typ)
3 當調用 instance.attr 時,發(fā)生了什么
假設 cls
是類爆哑,instance
是類 cls
的一個實例洞难,當調用 instance.attr
時,調用流程如下
-
如果在
cls
或者 其基類中的__dict__
找到了attr
揭朝,并且attr
是data descriptor
則調用其__get__
方法队贱,即__dict__['attr'].__get(instance, cls)
class Base(object): dd_base = DataDescriptor(0) ndd_base = NonDataDescriptor(0) class Derive(Base): dd_derive = DataDescriptor(0) ndd_derive = NonDataDescriptor(0) ndd_derive2 = NonDataDescriptor(1) not_descriptor_in_class = "Derive not descriptor in class" def __getattr__(self, key): return '__getattr__ with key %s in Derive' % key print(Base.__dict__) """ { '__module__': '__main__', 'dd_base': <__main__.DataDescriptor object at 0x7fc5c5b68a58>, 'ndd_base': <__main__.NonDataDescriptor object at 0x7fc5c5b68a90>, '__dict__': <attribute '__dict__' of 'Base' objects>, '__weakref__': <attribute '__weakref__' of 'Base' objects>, '__doc__': None} """ print(Derive.__dict__) """ {'__module__': '__main__', 'dd_derive': <__main__.DataDescriptor object at 0x7f9e74ac79b0>, 'ndd_derive': <__main__.NonDataDescriptor object at 0x7f9e74ac79e8>, 'same_name_attr': 'attr in class', '__doc__': None} """ b = Base() # 打印: DataDescriptor __get__<class '__main__.Base'> print(b.dd_base) d = Derive() # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_base) # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_derive) # 即使我們更改了 instance 的 __dict__ 屬性,訪問時仍然從 data descriptor 中讀取 # 不會從 instance.__dict__ 中讀取 b.__dict__['dd_base'] = 'changed in dict dd base' # 打印: DataDescriptor __get__<class '__main__.Base'> print(b.dd_base) d.__dict__['dd_derive'] = 'changed in dict dd derive' # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_derive)
-
如果
attr
出現在instance.__dict__
中萝勤,則返回instance.__dict__['attr']
露筒。否則,執(zhí)行下面的流程# 更改了 instance 的 __dict__ # 如果訪問的不是 data descriptor, 則直接中 instance.__dict__ 中讀取 attr b.__dict__['ndd_base'] = 'changed in dict ndd base' # 打印: changed in dict ndd base print(b.ndd_base) d.__dict__['ndd_derive'] = 'changed in dict ndd derive' # 打印: changed in dict ndd derive print(d.ndd_derive)
-
如果
attr
出現在類或者基類的__dict__
中-
如果是
non-data descriptor
, 則調用__get__
方法# 打印: NonDataDescriptor __get__<class '__main__.Derive'> print(d.ndd_derive2)
-
如果不是
descriptor
, 則返回__dict__['attr']
# 打印: Derive not descriptor in class print(d.not_descriptor_in_class)
-
-
如果仍未找到敌卓,如果類或者其基類有
__getattr__
方法慎式,則調用__getattr__
方法# 打印: __getattr__ with key no_exist_key in Derive print(d.no_exist_key)
-
否則拋出
AttributeError
try: b.no_exists_key except Exception as e: # 打印: True print(isinstance(e, AttributeError))
4 完整測試代碼
class DataDescriptor:
"""
包含了 __set__ 方法,所以這個類的實例是 data-descritptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'DataDescriptor __get__' + str(typ)
def __set__(self, instance, value):
print('DataDescriptor __set__')
self.value = value
class NonDataDescriptor:
"""
只定義了 __get__ 方法趟径,所以這個類的實例是 non-data descriptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'NonDataDescriptor __get__' + str(typ)
class Base(object):
dd_base = DataDescriptor(0)
ndd_base = NonDataDescriptor(0)
class Derive(Base):
dd_derive = DataDescriptor(0)
ndd_derive = NonDataDescriptor(0)
ndd_derive2 = NonDataDescriptor(1)
not_descriptor_in_class = "Derive not descriptor in class"
def __getattr__(self, key):
return '__getattr__ with key %s in Derive' % key
if __name__ == '__main__':
b = Base()
# 打印: DataDescriptor __get__<class '__main__.Base'>
print(b.dd_base)
d = Derive()
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_base)
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_derive)
# 即使我們更改了 instance 的 __dict__ 屬性瘪吏,訪問時仍然從 data descriptor 中讀取
# 不會從 instance.__dict__ 中讀取
b.__dict__['dd_base'] = 'changed in dict dd base'
# 打印: DataDescriptor __get__<class '__main__.Base'>
print(b.dd_base)
d.__dict__['dd_derive'] = 'changed in dict dd derive'
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_derive)
# 更改了 instance 的 __dict__
# 如果訪問的不是 data descriptor, 則直接中 instance.__dict__ 中讀取 attr
b.__dict__['ndd_base'] = 'changed in dict ndd base'
# 打印: changed in dict ndd base
print(b.ndd_base)
d.__dict__['ndd_derive'] = 'changed in dict ndd derive'
# 打印: changed in dict ndd derive
print(d.ndd_derive)
# 打印: NonDataDescriptor __get__<class '__main__.Derive'>
print(d.ndd_derive2)
# 打印: Derive not descriptor in class
print(d.not_descriptor_in_class)
# 打印: __getattr__ with key no_exist_key
print(d.no_exist_key)
try:
b.no_exists_key
except Exception as e:
# 打印: True
print(isinstance(e, AttributeError))
5 參考鏈接
https://blog.peterlamut.com/2018/11/04/python-attribute-lookup-explained-in-detail/
https://docs.python.org/3/howto/descriptor.html
https://www.cnblogs.com/xybaby/p/6270551.html
6 轉載一下調用流程圖片
圖片是從參考鏈接的第一個博客中復制的,把調用的流程描述的很清晰蜗巧,值得一看