demo
- 訓(xùn)練&保存
# -*- coding: utf-8 -*-
import tensorflow as tf
import input_data
mnist = input_data.read_data_sets('./訓(xùn)練集', one_hot=True)
'''
# 構(gòu)建運算圖
'''
# X Y 都是占位符 占位而已 不表示具體的數(shù)據(jù)
x = tf.placeholder("float", [None, 784],name='x') # 圖像的大小為784;None表示第一個維度可以是任意長度
# 一個Variable代表一個可修改的張量,它們可以用于計算輸入值卧蜓,也可以在計算中被修改
W = tf.Variable(tf.zeros([784, 10]),name = 'W')
b = tf.Variable(tf.zeros([10]),name = 'b')
y = tf.nn.softmax(tf.matmul(x, W) + b,name = 'y')
# 計算交叉熵
y_ = tf.placeholder("float", [None, 10],name = 'y_')
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
# 梯度下降算法(gradient descent algorithm)
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# 在運行計算之前郊酒,我們需要添加一個操作來初始化我們創(chuàng)建的變量:
init=tf.global_variables_initializer()
# 在一個Session里面啟動我們的模型厢呵,并且初始化變量:
sess=tf.Session()
sess.run(init)
# writer = tf.summary.FileWriter("./logfile",sess.graph)
# 訓(xùn)練模型1000次
for i in range(1000):
batch_xs, batch_ys=mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# writer.close()
correct_prediction=tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1),name = 'correct_prediction')
accuracy=tf.reduce_mean(tf.cast(correct_prediction, "float"),name = 'accuracy')
# print('-**-',accuracy,type(accuracy))
print(sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels}))
saver = tf.train.Saver()
saver.save(sess, "./Model/MNIST.ckpt")
- 提取
先給出一個錯誤的示范:
# -*- coding: utf-8 -*-
import tensorflow as tf
sess = tf.Session()
saver = tf.train.import_meta_graph('./Model/MNIST.ckpt.meta')
saver.restore(sess, './Model/MNIST.ckpt')
W = tf.get_default_graph().get_tensor_by_name('W:0')
b = tf.get_default_graph().get_tensor_by_name('b:0')
#print(sess.run(W))
#print(sess.run(b))
#print(sess.run(tf.get_default_graph().get_tensor_by_name('y:0'), feed_dict={
# x: mnist.test.next_batch(10)[0]}),mnist.test.next_batch(10)[1])
print(sess.run(tf.get_default_graph().get_tensor_by_name('accuracy:0'), feed_dict={
x: mnist.test.images, y_: mnist.test.labels}))
這個會報錯:
提示x未定義。
我們看一下代碼,在輸入變量feed_dict里面有{x: mnist.test.images}這一句。我們知道定義字典的時候例书,key值必須是一個變量或者是定值。在這里x沒有定義過刻炒。
改為:
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 14 16:04:23 2019
@author: zjp
"""
import input_data
mnist = input_data.read_data_sets('./訓(xùn)練集', one_hot=True)
import tensorflow as tf
sess = tf.Session()
saver = tf.train.import_meta_graph('./Model/MNIST.ckpt.meta')
saver.restore(sess, './Model/MNIST.ckpt')
#W = tf.get_default_graph().get_tensor_by_name('W:0')
#b = tf.get_default_graph().get_tensor_by_name('b:0')
x = tf.get_default_graph().get_tensor_by_name('x:0')
#print(sess.run(W))
#print(sess.run(b))
print(sess.run(tf.get_default_graph().get_tensor_by_name('y:0'), feed_dict={
x: mnist.test.next_batch(1)[0]}),mnist.test.next_batch(1)[1])
#print(sess.run(tf.get_default_graph().get_tensor_by_name('accuracy:0'), feed_dict={
# x: mnist.test.images, y_: mnist.test.labels}))
需要注意的是决采,tf.get_default_graph().get_tensor_by_name('y:0')
需要3個tf變量,但是除了x之外都不需要顯示定義坟奥。
兩者的正確率一樣树瞭,表示訓(xùn)練成功。
易犯錯誤
- 運行完一次保存變量的腳本之后爱谁,不清除變量就接著運行一次
- 上文已經(jīng)提到晒喷,在恢復(fù)變量的時候,如果出現(xiàn)提示
'x'未定義
之類的访敌,用tf.get_default_graph().get_tensor_by_name('x:0')
引入而不可以重新定義一個x = tf.placeholder()
凉敲。