純英文的數(shù)學(xué)文章 @ TeX模板

%  -*- coding: utf-8 -*-
% !TEX program = xelatex

\documentclass{article}

\usepackage{geometry} % Required to change the page size to A4
\geometry{a4paper} % Set the page size to be A4 as opposed to the default US Letter

\usepackage{graphicx} % Required for including pictures

\usepackage{float} % Allows putting an [H] in \begin{figure} to specify the exact location of the figure
\usepackage{wrapfig} % Allows in-line images such as the example fish picture

\usepackage{lipsum} % Used for inserting dummy 'Lorem ipsum' text into the template
\usepackage{exscale}
\usepackage{relsize}

\linespread{1.2} % Line spacing

%\setlength\parindent{0pt} % Uncomment to remove all indentation from paragraphs

\graphicspath{{./Pictures/}} % Specifies the directory where pictures are stored
\renewcommand{\arraystretch}{1.8}

\newtheorem{thm}{Theorem}

\begin{document}

\title{Leibniz's notation}
\author{@masaka}
\date{January 12th, 2013}
\maketitle

\tableofcontents

\section[Introduction]{ Introduction}
The calculus controversy was an argument between 17th-century mathematicians Isaac Newton and Gottfried Leibniz (begun or fomented in part by their disciples and associates – see Development of the quarrel below) over who had first invented calculus. It is a question that had been the cause of a major intellectual controversy over who first discovered calculus, one that began simmering in 1699 and broke out in full force in 1711.


\section{Leibniz's notation}

Leibniz notation centers around the concept of a differential element.
The differential element of $x$ is represented by $dx$.
You might think of $dx$ as being an infinitesimal change in $x$. It is important
to note that $d$ is an operator, not a variable. So, when you see $\frac{dy}{dx}$,
you can't automatically write as a replacement $\frac{y}{x}$.

We use $\frac{df(x)}{dx}$ or $\fracif7nrmw{dx}f(x)$ to represent the derivative of a
function $f(x)$ with respect to $x$.
$$ \frac{df(x)}{dx} = \lim_{Dx \to 0} \frac{f(x+Dx) - f(x)}{Dx} $$
We are dividing two numbers infinitely close to 0,
and arriving at a finite answer. $D$ is another operator that can be
thought of just a change in $x$. When we take the limit of $Dx$ as $Dx$ approaches 0,
we get an infinitesimal change $dx$.

Leibniz notation shows a wonderful use in the following example:
$$ \frac{dy}{dx} = \frac{dy}{dx} \frac{du}{du} = \frac{dy}{du} \frac{du}{dx} $$
The two $du$s can be cancelled out to arrive at the original derivative.
This is the Leibniz notation for the Chain Rule.

Leibniz notation shows up in the most common way of representing an integral,
$$ F(x) = \int f(x) dx $$
The $dx$ is in fact a differential element. Let's start with a derivative that
we know (since $F(x)$ is an antiderivative of $f(x)$).
\begin{eqnarray*}
\frac{dF(x)}{dx} & = & f(x) \\
dF(x) & = & f(x)dx \\
\int dF(x) & = & \int f(x)dx \\
F(x) & = & \int f(x) dx
\end{eqnarray*}
We can think of $dF(x)$ as the differential element of area. Since $dF(x) = f(x) dx$,
the element of area is a rectangle, with $f(x) \times dx$ as its dimensions. Integration is
the sum of all these infinitely thin elements of area along a certain interval. The result: a finite number.


One clear advantage of this notation is seen when finding the length $s$ of a curve.
The formula is often seen as the following:
$$ s = \int ds $$
The length is the sum of all the elements, $ds$, of length. If we have a function
$f(x)$, the length element is usually written as $ ds = \sqrt{1+[\frac{df(x)}{dx}]^2} dx $. If we
modify this a bit, we get $ ds = \sqrt{[dx]^2 + [df(x)]^2} $. Graphically, we
could say that the length element is the hypotenuse of a right triangle with one
leg being the $x$ element, and the other leg being the $f(x)$ element.


There are a few caveats, such as if you want to take the value of a
derivative. Compare to the prime notation.
$$ f'(a) = \left. \frac{df(x)}{dx} \right |_{x=a} $$

A second derivative is represented as follows:
$$ \fracpbj1gjp{dx} \frac{dy}{dx} = \frac{d^2y}{dx^2} $$
The other derivatives follow as can be expected: $\frac{d^3y}{dx^3}$, etc.
You might think this is a little sneaky, but it is the notation. Properly using
these terms can be interesting. For example, what is $\int \frac{d^2y}{dx} $? We
could turn it into $\int \frac{d^2y}{dx^2} dx$ or $\int d\frac{dy}{dx} $.
Either way, we get $\frac{dy}{dx}$.



\section{History}

The Newton-Leibniz approach to infinitesimal calculus was introduced in the 17th century. While Newton did not have a standard notation for integration, Leibniz began using the $$\int$$ character. He based the character on the Latin word summa ("sum"), which he wrote $\int$umma with the elongated \emph{\textbf{S}} commonly used in Germany at the time. This use first appeared publicly in his paper De Geometria, published in Acta Eruditorum of June 1686, but he had been using it in private manuscripts at least since 1675.
In the 19th century, mathematicians ceased to take Leibniz's notation for derivatives and integrals literally. That is, mathematicians felt that the concept of infinitesimals contained logical contradictions in its development. A number of 19th century mathematicians (Cauchy, Weierstrass and others) found logically rigorous ways to treat derivatives and integrals without infinitesimals using limits as shown above. Nonetheless, Leibniz's notation is still in general use. Although the notation need not be taken literally, it is usually simpler than alternatives when the technique of separation of variables is used in the solution of differential equations. In physical applications, one may for example regard $f(x)$ as measured in meters per second, and $dx$ in seconds, so that $f(x)dx$ is in meters, and so is the value of its definite integral. In that way the Leibniz notation is in harmony with dimensional analysis.
In the 1960s, building upon earlier work by Edwin Hewitt and Jerzy {\L}o\'{s}, Abraham Robinson developed rigorous mathematical explanations for Leibniz' intuitive notion of the "infinitesimal," and developed non-standard analysis based on these ideas. Robinson's methods are used by only a minority of mathematicians. Jerome Keisler wrote a first-year-calculus textbook based on Robinson's approach.

\section{the difference between Leibniz's notation and Lagrange's notation}
There are two main types of notation used to denote the derivative of a function

\textbf{Lagrange’s Notation} is to write the derivative of the function $f(x)$ as
$$f'(x).$$

\textbf{Leibniz’s Notation} is to write the derivative of the function $f$ as
$$\frac{df}{dx}.$$
Two other notations are worth mentionin

\textbf{Newton’s Notation} is to write the derivative of y using a dot
$$\dot{y}.$$

\textbf{Euler’s Notation} is to use a capital D i.e.
$$D_{x}f(x).$$
The Lagrange and Leibniz notation will be considered in some situations involving
differentiation. It may be that the comments are influenced too much
by the particular methods of teaching received by the author. Any further comments are welcome.
\begin{enumerate}
  \item Functions of a single variable
  \begin{enumerate}
    \item Basic
    \begin{center}
    \begin{tabular}{|c|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
       & Lagrange & Leibniz \\\hline
      Function& $f(x)$ & $f$ \\\hline
      Derivative & $f^{'}(x)$ & $\frac{df}{dx}$ \\\hline
      2nd Derivative & $f^{’’}(x)$ & $\frac{d^{2}f}{dx^{2}}$ \\\hline
      Higher Derivative & $f^{n}(x)$ & $\frac{d^{n}f}{dx^{n}}$ \\\hline
      Integral & & $\int f(x)dx $ \\
      \hline
    \end{tabular}
    \end{center}
   \emph{ Comments} For the higher derivatives the (n) is a little cumbersomeand can possible be mistaken for an index. An integral is rarely seen without a $dx$ so there is no entry in the Lagrange Column.
    \item Differention Rules
    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Product Rule & \\\hline
      Lagrange & $[u(x)v(x)'=u(x)v'(x)+u'(x)v(x)]$ \\\hline
      Leibniz & $\fracyn0k0qw{dx}[uv]=u\frac{dv}{dx}+v\frac{du}{dx}$ \\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} The Leibniz notation is probably more common here.

    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Chain Rule &  \\\hline
      Lagrange & $f[g(x)]'=f'[g(x)]\times g'(x)$\\\hline
      Leibniz & $\fracgs2h4hf{dx}[f(g(x))]= \frac{df}{dg} \times \frac{dg}{dx} $\\
      \hline
    \end{tabular}
    \end{center}
   \emph{ Comments} Neither set looks ’comfortable in its entirety. The most comfortable may be a mixture such as $\fraczpx72bz{dx}[f(g(x))]=f'[g(x)]\times g'(x).$




    \item Integration
    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Integration by parts &  \\\hline
      Lagrange & $\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$ \\\hline
      Laibniz & $\int u\frac{dv}{dx}=uv-\int v\frac{du}{dx}dx$ \\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} The Lagrange notation is certainly more common here.
    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Arc Length &  \\\hline
      Lagrange & $\int_{a}^助析\sqrt{1+[f'(x)^{2}]}dx$\\\hline
      Leibniz & $\int_{a}^褥民\sqrt{1+[(\frac{df}{dx})^{2}]}dx$\\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} Not a great deal to choose between the two.




  \end{enumerate}
  \item Functions of Two Variables
  \begin{enumerate}
    \item Basic
    \begin{center}
    \begin{tabular}{|c|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
       & Lagrange & Leibniz \\\hline
      Function & $f(x,y)$ & $f$ \\\hline
      Derivative & $f_{x},f_{y}$ & $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$ \\\hline
      2nd Derivative & $f_{xx},f_{xy},f_{yy}$ & $\frac{\partial^{2}f}{\partial x^{2}},\frac{\partial^{2}f}{\partial xy},\frac{\partial^{2}f}{\partial y^{2}}$ \\\hline
      Higher Derivative & $f_{xxxyyyy}$ & $\frac{\partial ^{5}f}{\partial x^{3}\partial y^{4}}$ \\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} A long series of subscripts can start to look a bit clumsy.

    \item Others
    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Partial Differential Equation &  \\\hline
      Lagrange & $x^{2}f_{x}-2xyf_{y}=1$ \\\hline
      Leibniz & $x^{2}\frac{\partial f}{\partial x}-2xy\frac{\partial f}{\partial y}=1$ \\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} Again, the Liebniz notation is certainly more common here.

    \begin{center}
    \begin{tabular}{|c|c|}
      \hline
      % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
      Checking PDE solution &  \\\hline
      Lagrange & $f_{x}=2xyg'(x^{2}y)+\frac{1}{x^{2}}$ \\\hline
      Leibniz & $\frac{\partial f}{\partial x}=2xy\frac{\partial g(x^{2}y)}{\partial x^{2}y}+\frac{1}{x^{2}}$
       \\
      \hline
    \end{tabular}
    \end{center}
    \emph{Comments} The Leibniz notation is having difficulty here with terms such as$\frac{\partial g(x^{2}y)}{\partial x^{2}y}$ being extremely clumsy.
    \end{enumerate}
\end{enumerate}

\begin{thm}
If we have the following conditions:
\begin{enumerate}
\item $f(x)$ is continuous on $[a,b]$,
\item $f(x)$ is derivable on $(a,b)$,
\item $f(a)$ and $f(b)$ have the same value,
\end{enumerate}
Then there exists $\xi\in(a,b)$ such that $f'(\xi)=0$.
\end{thm}

\section{Conclusion}
In general, the Leibniz notation rests more comfortably with these examples.However, there were several cases where the Lagrange notation had a slight advantage. For the final case of checking the solution of a partial differential equation, this was a large and significant advantage.For the final case of checking the solution of a partial differential equation, this was a large and significant advantage.
\end{document}

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末爸黄,一起剝皮案震驚了整個(gè)濱河市葱轩,隨后出現(xiàn)的幾起案子屠阻,更是在濱河造成了極大的恐慌,老刑警劉巖策菜,帶你破解...
    沈念sama閱讀 219,110評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件晶疼,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡又憨,警方通過查閱死者的電腦和手機(jī)翠霍,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,443評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來蠢莺,“玉大人寒匙,你說我怎么就攤上這事□锝” “怎么了锄弱?”我有些...
    開封第一講書人閱讀 165,474評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)祸憋。 經(jīng)常有香客問我会宪,道長(zhǎng),這世上最難降的妖魔是什么夺衍? 我笑而不...
    開封第一講書人閱讀 58,881評(píng)論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮喜命,結(jié)果婚禮上沟沙,老公的妹妹穿的比我還像新娘。我一直安慰自己壁榕,他們只是感情好矛紫,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,902評(píng)論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著牌里,像睡著了一般颊咬。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上牡辽,一...
    開封第一講書人閱讀 51,698評(píng)論 1 305
  • 那天喳篇,我揣著相機(jī)與錄音,去河邊找鬼态辛。 笑死麸澜,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的奏黑。 我是一名探鬼主播炊邦,決...
    沈念sama閱讀 40,418評(píng)論 3 419
  • 文/蒼蘭香墨 我猛地睜開眼编矾,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了馁害?” 一聲冷哼從身側(cè)響起窄俏,我...
    開封第一講書人閱讀 39,332評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎碘菜,沒想到半個(gè)月后凹蜈,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,796評(píng)論 1 316
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡炉媒,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,968評(píng)論 3 337
  • 正文 我和宋清朗相戀三年踪区,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片吊骤。...
    茶點(diǎn)故事閱讀 40,110評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡缎岗,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出白粉,到底是詐尸還是另有隱情传泊,我是刑警寧澤,帶...
    沈念sama閱讀 35,792評(píng)論 5 346
  • 正文 年R本政府宣布鸭巴,位于F島的核電站眷细,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏鹃祖。R本人自食惡果不足惜溪椎,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,455評(píng)論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望恬口。 院中可真熱鬧校读,春花似錦、人聲如沸祖能。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,003評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)养铸。三九已至雁芙,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間钞螟,已是汗流浹背兔甘。 一陣腳步聲響...
    開封第一講書人閱讀 33,130評(píng)論 1 272
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留鳞滨,地道東北人裂明。 一個(gè)月前我還...
    沈念sama閱讀 48,348評(píng)論 3 373
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親闽晦。 傳聞我的和親對(duì)象是個(gè)殘疾皇子扳碍,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,047評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容