一锭吨、問題描述
Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
Example:
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
二剃执、解決思路
思路一:題目要求時間復雜度為O(logn),因此硅急,可以采用二分查找目標元素圣猎,查找到后采用分治分別求出目標元素的最小下標和最大下標逝钥,分治過程同樣是使用二分查找
三、算法實現
思路一
public int[] searchRange(int[] nums, int target) {
int lens = nums.length;
if(lens == 0) return new int[]{-1,-1};
int left = 0;
int right = lens - 1;
int fidx = -1;
int eidx = -1;
// 先二分找出target下標
int idx = binarySearch(nums, left, right, target);
fidx = idx;
eidx = idx;
//System.out.println(fidx + ", " + eidx);
if(fidx == -1) {
return new int[]{-1,-1};
}
// 繼續(xù)二分查找最小下標
if(fidx > 0){
while(true){
left = 0;
right = fidx - 1;
int min = binarySearch(nums, left, right, target);
//System.out.println("min = " + min);
if(min != -1){
fidx = min;
} else {
break;
}
}
}
//System.out.println("============");
// 二分查找最大下標
if(eidx < lens - 1){
while(true){
left = eidx + 1;
right = lens - 1;
int max = binarySearch(nums, left, right, target);
//System.out.println("max = " + max);
if(max == -1){
break;
} else {
eidx = max;
}
}
}
return new int[]{fidx,eidx};
}
public int binarySearch(int[] nums, int left, int right, int target){
int idx = -1;
while(left <= right){
int mid = (left + right) / 2;
if(nums[mid] == target) {
idx = mid;
break;
} else if(nums[mid] > target){
right = mid - 1;
} else {
left = mid + 1;
}
}
return idx;
}