powerbi學習

Power BI 是微軟推出的數(shù)據(jù)分析和可視化工具

PowerBI繪圖一般分為三個步驟:選擇可視化圖表熬拒,圖標字段選擇非春,圖標格式設計。

power Query:pq? 超級查詢雹食,

power? pivot? PP 就是超級透視

powerbi操作:

二維表轉(zhuǎn)化為一維表:

透視:一維表轉(zhuǎn)二維表哩都。

逆透視:二維表轉(zhuǎn)化為一維表。

? ??????????????????????PowerQuery 常用的數(shù)據(jù)清洗十三招

1.提升標題

在 Excel 中第一行為標題行婉徘,從第二行開始才是數(shù)據(jù)漠嵌,但在 PQ 中,從第一行開始就需要是數(shù)據(jù)記錄盖呼,標題在數(shù)據(jù)之上

2.更改數(shù)據(jù)類型

兩種更改數(shù)據(jù)類型的方式儒鹿。

3.刪除空值/錯誤



4刪除重復值


5.填充

在 Excel 數(shù)據(jù)中經(jīng)常會見到合并單元格的情況,導入后就變成了空值

6.合并列

需要選取列數(shù)大于1几晤,可選取分隔符

7.拆分列

拆分相當于是合并列的反動作约炎,不過功能更豐富,可以選著按字符數(shù)蟹瘾,也可以選擇按分隔符圾浅,如果列中包含多個分隔符,還可以選擇按哪個位置的分隔符來拆分:


8分組

9.提取

PQ 的提取功能可以按照長度憾朴、首字符狸捕、尾字符、范圍等來提取众雷,比如下面這個例子灸拍,提取前2 個字符

10.行列轉(zhuǎn)置


11.行列操作

12逆透視列

這是 PQ 非常便捷的逆天功能,由于數(shù)據(jù)分析的需要砾省,我們經(jīng)常要將二維表變?yōu)橐痪S表鸡岗,之前在Excel 中需要很多操作步驟才能完成,而通過逆透視功能编兄,可以一鍵降為一維表


13透視列

做分析需要一維表轩性,而為了展現(xiàn)的需要,常常還要把一維表變成二維表狠鸳,也就是 Excel 中的數(shù)據(jù)透視揣苏,在PQ 中同樣可以一鍵透視,比如把剛才的一維表變成原樣碰煌,聚合方式選擇‘不要聚合”舒岸。


????????????????????????????????????????????????數(shù)據(jù)豐富

加入新列绅作、新行芦圾,或者從其他表中添加進來更多維度的數(shù)據(jù)

1添加列

四種形式,重復列俄认、索引列个少、條件列洪乍、自定義列:


2.追加查詢 多表行

追加查詢是在現(xiàn)有記錄的基礎上,在下邊添加新的行數(shù)據(jù)夜焦, 是一種縱向合并壳澳,比如有兩個表格式相同,需要合并為一個表茫经,點擊“追加查詢”巷波,


3.合并查詢 多表列 相當于vlookup函數(shù)。

? ??????????????????????????????????????M函數(shù)

1.M函數(shù)的基本規(guī)范:

? M 函數(shù)對大小寫敏感卸伞,每一個字母必須按函數(shù)規(guī)范書寫抹镊,第一個字母都是大寫

? 表被稱為 Table,每行的內(nèi)容是一個 Record荤傲,每列的內(nèi)容是一個 List

? 行標用大括號{ }垮耳,比如取第一行的內(nèi)容: =表{0} //PQ 的第一行從 0 開始

? 列標用中括號[ ],比如取自定義列的內(nèi)容: =表[自定義]

? 取第一行自定義列的內(nèi)容: =表{0}[自定義]

2.常用M函數(shù):

聚合函數(shù):

求和: List.Sum()

求最小值: List.Min()

求最大值: List.Max()

求平均值: List.Average()

文本函數(shù)

求文本長度: Text.Length()

去文本空格: Text.Trim()

取前 n 個字符: Text.Start(文本,n)

取后 n 個字符: Text.End(文本,n)

提取數(shù)據(jù)函數(shù):

從 Excel 表中提取數(shù)據(jù): Excel.Workbook()

從 Csv/Txt 中提取數(shù)據(jù): Csv.Document()

條件函數(shù):

if else then (相當于 Excel 中的 IF)

3.從哪里查找 M 函數(shù)

新建一個空查詢遂黍,在公式標記欄中輸入#shared终佛,就把所有的 M 函數(shù)顯示出來了

????????????????????????????????????數(shù)據(jù)建模

1.定義:

Power BI 可以從多個表格、多種來源的數(shù)據(jù)中雾家,根據(jù)不同的維度铃彰、不同

的邏輯來聚合分析數(shù)據(jù);而提取數(shù)據(jù)的前提是要將這些數(shù)據(jù)表建立關系芯咧,這個建立關系的

過程就是數(shù)據(jù)建模豌研。

2.基數(shù)

? 基數(shù)就是兩個連接字段的對應關系,分為多對一唬党、一對一和一對多鹃共,一對多和多對一

其實是一樣的,實際上就是兩種關系:

? 多對一(*: 1):這是最常見的類型驶拱,代表一個表中的關系列有重復值霜浴,而在另一個表

中是單一值

? 一對一(1: 1):兩個表是一對一的關系,列中的每個值在兩個表中都是唯一的

? 具有唯一值的表通常稱為“查找表”蓝纲,而具有多個值的表稱為“引用表”阴孟。在上述的關系圖

上,產(chǎn)品明細表上類別手機税迷、平板永丝、電腦都不是唯一的,每個品牌都有這種類型箭养,是

個引用表慕嚷;但類別表上,幾種類別都是唯一值,因此這兩個表是多對一的關系喝检,類別

表也就是查找表

3.交叉篩選方向

表示數(shù)據(jù)篩選的流向嗅辣,有兩種類型:

? 雙向:兩個表可以互相篩選

? 單向:一個表只能對另一個表篩選,而不能反向

4.DAX

創(chuàng)建度量值的公式稱為 DAX 公式

????????????????????????????????????????度量值


1.定義

度量值是用 DAX 公式創(chuàng)建一個虛擬字段的數(shù)據(jù)值挠说,她不改變源數(shù)據(jù)澡谭,也不改變

數(shù)據(jù)模型。

2.度量值特征

? ? ? ? 1上下文

度量值的最重要的特征: 上下文损俭,上下文就是度量值所處的環(huán)境蛙奖,篩選表的行列標簽、切片器的選中杆兵,都是度量值的上下

文外永,比如北京

2017 年截至 5 月的蘋果手機累計銷售額 3424000,它的上下文就是下面這 5

個維度:

[城市]="北京市"

[品牌]="蘋果"

[類別]="手機"

[年度]=2017

[月份]=5 月

? ? ? ? ? ?2度量值不浪費內(nèi)存拧咳,只有被拖到圖表上才執(zhí)行運算伯顶,如果數(shù)據(jù)量非常大的時候這點非

常有利

? ? ? ? ? ? 3度量值可以循環(huán)使用,比如上面的建立的度量值:

? ??????????????????????????????????????????????DAX

DAX:data analysis expression

DAX的主要功能正是查詢和運算骆膝, DAX 查詢函數(shù)負責篩選出有用的數(shù)據(jù)集合祭衩,然后利用 DAX 的

聚合函數(shù)執(zhí)行計算

上下文:

外部上下文:外部可以看得見的篩選:標簽和切片器,

內(nèi)部上下文:創(chuàng)建度量值的 DAX 公式阅签,它的查詢篩選函數(shù)可以擴大掐暮、限制或者重置外部上下文

DAX的使用范圍:
DAX除了可以創(chuàng)建度量值。還可以新建列(占用內(nèi)存)政钟。

DAX參數(shù)的基本格式:

表名用單引號' '括著 // '日期表'

字段用中括號[ ]括著 //[日期]

度量值也是用中括號[ ]

引用字段始終要包含表名路克,以和度量值區(qū)分開

DAX 常用函數(shù)

聚合函數(shù):

SUM 求和

AVERAGE 平均

MIN 最小

MAX? 最大

COUNT:計數(shù)

?COUNTROWS:計算行數(shù)

DISTINCTCOUNT:計算不重復值的個數(shù)

函數(shù)后面加x,可以循環(huán)訪問表的每一行养交,并執(zhí)行計算精算,所以也被稱為迭代函數(shù)

SUMX

AVERAGEX

MINX

MAXX

RANKX

時間智能函數(shù)

PREVIOUSYEAR/Q/M/D:上一年/季/月/日

NEXTYEAR/Q/M/D:下一年/季/月/日

?TOTALYTD/QTD/MTD:年/季/月初至今

?SAMEPERIODLASTYEAR:上年同期

PARALLELPERIOD:上一期

?DATESINPERIOD:指定期間的日期

篩選函數(shù)

FILTER:篩選,F(xiàn)ILTER 函數(shù)返回的表碎连,所以它不能單獨用于建度量值

?ALL:所有值灰羽,可以清除篩選

ALLEXCEPT:保留指定列

VALUES:返回不重復值

CALCULATE:

CALCULATE(<expression>,<filter1>,<filter2>…)

第一個參數(shù)是計算表達式,可以執(zhí)行各種聚合運算


從第二個參數(shù)開始鱼辙,是一系列篩選條件廉嚼,可以為空;如果多個篩選條件倒戏,用逗號分隔

所有曬選條件的交集形成最終的篩選數(shù)據(jù)集合

根據(jù)篩選出的數(shù)據(jù)集合執(zhí)行第一個參數(shù)的聚合運算并返回運算結(jié)果

calculate 可以直接引用創(chuàng)建好的度量值怠噪。

添加限制條件,縮小上下文:

結(jié)合 ALL 函數(shù)杜跷,擴大上下文:

ALL('產(chǎn)品明細')的意思是清除產(chǎn)品明細表里的所有篩選傍念,外部篩選器不起作用了矫夷,每行統(tǒng)計的都是該表中的所有產(chǎn)品。

重置上下文:

FILTER 函數(shù)

?第一個參數(shù)<table>是要篩選的表

第二個參數(shù)<filter>是篩選條件

返回的是一張表捂寿,不能單獨使用,需要與其他函數(shù)結(jié)合使用

產(chǎn)品數(shù)量2 = calculate([產(chǎn)品數(shù)量],'產(chǎn)品明細表'[品牌]="蘋果")

等同于:
產(chǎn)品數(shù)量2 =?calculate([產(chǎn)品數(shù)量],FILTER(ALL('產(chǎn)品明細表'[品牌]),'產(chǎn)品明細表'[品牌]="蘋果"))

常用格式:calculate(...,FILTER(ALL(..),....))

HASONEVALUE 和 SUMX 函數(shù)

1.HASONEVALUE(列名)孵运,是個邏輯判斷函數(shù)秦陋,如果有單一值,返回 ture,否則返回 false

判斷外部上下文中是否為該列中的唯一值治笨,做切片器交互時十分有用


2.SUMX(表驳概,表中每一行計算的表達式)

逐行計算,占用內(nèi)存旷赖,數(shù)據(jù)量過大時

EARLIER函數(shù)


操作行中對應參數(shù)列的操作顺又。

powerbi? 可視化

1.堆積圖:

不同的序列在一根柱子上顯示

可以直接比較總量的大小

分類序列的數(shù)值比較功能弱化

2.簇狀柱形圖的特征:

? 不同序列使用不同的柱子

? 可以比較各序列的數(shù)值大小

? 總量比較功能弱化

3.百分比堆積柱形圖的特征:

? 與堆積柱形圖類似,不同序列在一根柱子上顯示

? 顯示各序列的相對大小等孵, Y 軸標簽變?yōu)榘俜直?/p>

? 無法比較總量稚照,每根柱子都一樣高

柱形圖格式設置:

4.單層樹狀圖

5.雙層樹狀圖

在詳情信息中添加字段。

樹狀圖的使用場景

? 要顯示大量的分層數(shù)據(jù)

? 條形圖不能有效地處理大量值

? 要顯示每個部分與整體之間的比例

? 要顯示層次結(jié)構(gòu)中指標在各個類別層次的分布的模式

? 要使用大小和顏色編碼顯示屬性

? 要發(fā)現(xiàn)模式俯萌、離群值果录、最重要因素和異常

6.氣泡地圖-Bubble Map

7著色地圖-Filled Map

8.ArcGIS 地圖

PowerBI 常用操作

1.查看圖表的三種方式:

選中圖表,點擊上方【數(shù)據(jù)/鉆取】選項卡“查看數(shù)據(jù)”

選中圖表咐熙,然后點擊右上角三個點弱恒,選擇“顯示數(shù)據(jù)”

在圖表上單擊右鍵,選擇“查看數(shù)據(jù)”

2.圖表鉆取2種棋恼。

通過圖表右上角的向下箭頭“啟用深化”返弹。

使用頂部 Power BI“數(shù)據(jù)/鉆取”選項卡。

3.編輯交互



如果需要響應該篩選爪飘,則選擇“篩選”圖標

如果不希望被篩選义起,則選擇“不起作用”圖標


? ??????????????????????????????書簽與按鈕




?著作權歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市师崎,隨后出現(xiàn)的幾起案子并扇,更是在濱河造成了極大的恐慌,老刑警劉巖抡诞,帶你破解...
    沈念sama閱讀 219,490評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件穷蛹,死亡現(xiàn)場離奇詭異,居然都是意外死亡昼汗,警方通過查閱死者的電腦和手機肴熏,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,581評論 3 395
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來顷窒,“玉大人蛙吏,你說我怎么就攤上這事源哩。” “怎么了鸦做?”我有些...
    開封第一講書人閱讀 165,830評論 0 356
  • 文/不壞的土叔 我叫張陵励烦,是天一觀的道長。 經(jīng)常有香客問我泼诱,道長坛掠,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,957評論 1 295
  • 正文 為了忘掉前任治筒,我火速辦了婚禮屉栓,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘耸袜。我一直安慰自己友多,他們只是感情好,可當我...
    茶點故事閱讀 67,974評論 6 393
  • 文/花漫 我一把揭開白布堤框。 她就那樣靜靜地躺著域滥,像睡著了一般。 火紅的嫁衣襯著肌膚如雪蜈抓。 梳的紋絲不亂的頭發(fā)上骗绕,一...
    開封第一講書人閱讀 51,754評論 1 307
  • 那天,我揣著相機與錄音资昧,去河邊找鬼酬土。 笑死,一個胖子當著我的面吹牛格带,可吹牛的內(nèi)容都是我干的撤缴。 我是一名探鬼主播,決...
    沈念sama閱讀 40,464評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼叽唱,長吁一口氣:“原來是場噩夢啊……” “哼屈呕!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起棺亭,我...
    開封第一講書人閱讀 39,357評論 0 276
  • 序言:老撾萬榮一對情侶失蹤虎眨,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后镶摘,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體嗽桩,經(jīng)...
    沈念sama閱讀 45,847評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,995評論 3 338
  • 正文 我和宋清朗相戀三年凄敢,在試婚紗的時候發(fā)現(xiàn)自己被綠了碌冶。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,137評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡涝缝,死狀恐怖扑庞,靈堂內(nèi)的尸體忽然破棺而出譬重,到底是詐尸還是另有隱情,我是刑警寧澤罐氨,帶...
    沈念sama閱讀 35,819評論 5 346
  • 正文 年R本政府宣布臀规,位于F島的核電站,受9級特大地震影響栅隐,放射性物質(zhì)發(fā)生泄漏塔嬉。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,482評論 3 331
  • 文/蒙蒙 一约啊、第九天 我趴在偏房一處隱蔽的房頂上張望邑遏。 院中可真熱鬧佣赖,春花似錦恰矩、人聲如沸梅惯。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,023評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽鳄哭。三九已至俩檬,卻和暖如春萎胰,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背棚辽。 一陣腳步聲響...
    開封第一講書人閱讀 33,149評論 1 272
  • 我被黑心中介騙來泰國打工技竟, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人屈藐。 一個月前我還...
    沈念sama閱讀 48,409評論 3 373
  • 正文 我出身青樓榔组,卻偏偏與公主長得像,于是被迫代替她去往敵國和親联逻。 傳聞我的和親對象是個殘疾皇子搓扯,可洞房花燭夜當晚...
    茶點故事閱讀 45,086評論 2 355

推薦閱讀更多精彩內(nèi)容

  • 請女孩們 共勉
    陶子衿閱讀 130評論 0 1
  • 古人詠梅:墻角數(shù)枝梅,凌寒獨自開 自古以來包归,詩言志锨推,世間萬物在詩人眼中,無不為其潤色公壤,并為其抹上感情色彩换可。“疏影橫...
    於潛閱讀 379評論 0 0
  • 看到李詠因患癌癥離世的消息厦幅,是在我上公交車之前锦担,我很疑惑,感覺也許是造謠慨削。這時候公交車來了洞渔,我把手機放到衣袋里套媚,上...
    四季風箏閱讀 498評論 7 10
  • 監(jiān)聽某個任務執(zhí)行結(jié)束 方法一、使用dispatch_block_wait磁椒,此方法會阻塞當前線程堤瘤,不要放在主線程中。...
    北你妹的風閱讀 216評論 0 0
  • 5555555555555555555555555
    68bbeee66d88閱讀 191評論 0 0