Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time.
- Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log","cog"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
- You may assume no duplicates in the word list.
- You may assume beginWord and endWord are non-empty and are not the same.
一刷
題解:BFS
構(gòu)建set怎燥,首先將step全部為1的word加入set, 然后2, 3, ...直到有word為end
然后,為了節(jié)約時(shí)間,我們用two end诸蚕, 這就意味著有一個(gè)begin set, 一個(gè)end set, 當(dāng)begin set的size大于end set時(shí),我們就從endSet開始找炬丸。
plus赊淑,為了避免重復(fù)的尋找,我們用一個(gè)visited set, 如果已經(jīng)visited過, 就不考慮碴裙。
public class Solution {
public int ladderLength(String beginWord, String endWord, List<String> dict) {
Set<String> wordList = new HashSet<>(dict);
Set<String> beginSet = new HashSet<String>(), endSet = new HashSet<String>();
int len = 1;
int strLen = beginWord.length();
HashSet<String> visited = new HashSet<String>();
beginSet.add(beginWord);
endSet.add(endWord);
while (!beginSet.isEmpty() && !endSet.isEmpty()) {
if (beginSet.size() > endSet.size()) {
Set<String> set = beginSet;
beginSet = endSet;
endSet = set;
}
Set<String> temp = new HashSet<String>();
for (String word : beginSet) {
char[] chs = word.toCharArray();
for (int i = 0; i < chs.length; i++) {
for (char c = 'a'; c <= 'z'; c++) {
char old = chs[i];
chs[i] = c;
String target = String.valueOf(chs);
if (endSet.contains(target)) {
return len + 1;
}
if (!visited.contains(target) && wordList.contains(target)) {
temp.add(target);
visited.add(target);
}
chs[i] = old;
}
}
}
beginSet = temp;
len++;
}
return 0;
}
}